GEOMETRIC SERIES II (OF II)

Limit of a Geometric Series

The limit of a geometric series is fully understood and depends only on the position of the number x on the real line.

(1) If
$$x \le -1$$
, then $\sum_{n=0}^{\infty} x^n$ does not exist
(2) If $|x| < 1$, then $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$.
(3) If $x \ge 1$, then $\sum_{n=0}^{\infty} x^n = \infty$.

Observe that every real number x falls into exactly one of the three cases $x \leq -1$, |x| < 1 (or equivalently, -1 < x < 1) and $x \geq 1$. In particular for every x we understand the limit of the corresponding geometric series. Also note that the geometric series only converges if |x| < 1, and in this case we know that it converges towards $\frac{1}{1-x}$. Furthermore if $x \geq 1$, the geometric series diverges to infinity. This is clear as we are adding up increasingly larger numbers and thus surpass any boundary.

Example 2.1: Let x = 1. In this case we have $x \ge 1$, and so

$$\sum_{n=0}^{\infty} 1^n = \infty,$$

that is, this geometric series diverges to infinity. We can verify this result by taking a look at the sequence of partial sums $s_0 = 1$, $s_1 = 2$, $s_2 = 3$, $s_3 = 4$, $s_4 = 5$ and so on. (See also Example 1.1 on the handout Geometric Series I). Clearly this sequence tends to infinity.

Example 2.2 Let x = -2. In this case we have $x \leq -1$, and so

$$\sum_{n=0}^{\infty} (-2)^n \quad \text{does not exist.}$$

Material developed by the Department of Mathematics & Statistics, NUIM and supported by www.ndlr.com.

Here the sequence of partial sums is given by $s_0 = 1$, $s_1 = -1$, $s_2 = 3$, $s_4 = -5$, $s_5 = 11$ and so on. (See also Example 1.2 on the handout Geometric Series I). Note how the sequence elements alter between positive and negative integers making the existence of a limit impossible.

Example 2.3 Let $x = \frac{1}{2}$. In this case we have |x| < 1, and so $\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{1 - \frac{1}{2}} = 2,$

that is, this geometric series converges to 2. Recall from Example 1.3 on the handout Geometric Series I, that the sequence of partial sums is given by $s_0 = 1$, $s_1 = \frac{3}{2}$, $s_2 = \frac{7}{4}$, $s_3 = \frac{15}{8}$, $s_4 = \frac{31}{16}$ and so on. One can check that $s_n = \frac{2^{n+1}-1}{2^n}$, for all $n \ge 0$. Note that this sequence of partial sums really tends towards 2.

Example 2.4 Let us find the limit of the series $\sum_{n=0}^{\infty} \frac{1}{3^n}$. This series is a geometric series. However it is important to realize that $\frac{1}{3^n} = (\frac{1}{3})^n$, which means that $x = \frac{1}{3}$ and NOT x = 3. Hence |x| < 1 and we get

$$\sum_{n=0}^{\infty} \frac{1}{3^n} = \frac{1}{1 - \frac{1}{3}} = \frac{3}{2}$$

that is, the series converges to $\frac{3}{2}$.

Example 2.5 Let us find the limit of the series $\sum_{n=1}^{\infty} \frac{1}{3^n}$. This series is almost the geometric series $\sum_{n=0}^{\infty} \frac{1}{3^n}$ with the only difference that n starts at 1 rather than 0. Since $\frac{1}{3^0} = 1$ we can say

$$\sum_{n=1}^{\infty} \frac{1}{3^n} = \left(\sum_{n=0}^{\infty} \frac{1}{3^n}\right) - 1$$

From the previous example we know that $\sum_{n=0}^{\infty} \frac{1}{3^n} = \frac{3}{2}$ and thus

$$\sum_{n=1}^{\infty} \frac{1}{3^n} = \frac{3}{2} - 1 = \frac{1}{2},$$

that is, the series converges to $\frac{1}{2}$.

 $\mathbf{2}$