GEOMETRIC SERIES II (OF II)

Limit of a Geometric Series

The limit of a geometric series is fully understood and depends only on the position of the number x on the real line.
(1) If $x \leq-1$, then $\sum_{n=0}^{\infty} x^{n}$ does not exist.
(2) If $|x|<1$, then $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$.
(3) If $x \geq 1$, then $\sum_{n=0}^{\infty} x^{n}=\infty$.

Observe that every real number x falls into exactly one of the three cases $x \leq-1,|x|<1$ (or equivalently, $-1<x<1$) and $x \geq 1$. In particular for every x we understand the limit of the corresponding geometric series. Also note that the geometric series only converges if $|x|<1$, and in this case we know that it converges towards $\frac{1}{1-x}$. Furthermore if $x \geq 1$, the geometric series diverges to infinity. This is clear as we are adding up increasingly larger numbers and thus surpass any boundary.

Example 2.1: Let $x=1$. In this case we have $x \geq 1$, and so

$$
\sum_{n=0}^{\infty} 1^{n}=\infty
$$

that is, this geometric series diverges to infinity. We can verify this result by taking a look at the sequence of partial sums $s_{0}=1, s_{1}=2$, $s_{2}=3, s_{3}=4, s_{4}=5$ and so on. (See also Example 1.1 on the handout Geometric Series I). Clearly this sequence tends to infinity.

Example 2.2 Let $x=-2$. In this case we have $x \leq-1$, and so

$$
\sum_{n=0}^{\infty}(-2)^{n} \text { does not exist. }
$$

[^0]Here the sequence of partial sums is given by $s_{0}=1, s_{1}=-1, s_{2}=3$, $s_{4}=-5, s_{5}=11$ and so on. (See also Example 1.2 on the handout Geometric Series I). Note how the sequence elements alter between positive and negative integers making the existence of a limit impossible.

Example 2.3 Let $x=\frac{1}{2}$. In this case we have $|x|<1$, and so

$$
\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}=\frac{1}{1-\frac{1}{2}}=2
$$

that is, this geometric series converges to 2. Recall from Example 1.3 on the handout Geometric Series I, that the sequence of partial sums is given by $s_{0}=1, s_{1}=\frac{3}{2}, s_{2}=\frac{7}{4}, s_{3}=\frac{15}{8}, s_{4}=\frac{31}{16}$ and so on. One can check that $s_{n}=\frac{2^{n+1}-1}{2^{n}}$, for all $n \geq 0$. Note that this sequence of partial sums really tends towards 2 .

Example 2.4 Let us find the limit of the series $\sum_{n=0}^{\infty} \frac{1}{3^{n}}$. This series is a geometric series. However it is important to realize that $\frac{1}{3^{n}}=\left(\frac{1}{3}\right)^{n}$, which means that $x=\frac{1}{3}$ and NOT $x=3$. Hence $|x|<1$ and we get

$$
\sum_{n=0}^{\infty} \frac{1}{3^{n}}=\frac{1}{1-\frac{1}{3}}=\frac{3}{2}
$$

that is, the series converges to $\frac{3}{2}$.
Example 2.5 Let us find the limit of the series $\sum_{n=1}^{\infty} \frac{1}{3^{n}}$. This series is almost the geometric series $\sum_{n=0}^{\infty} \frac{1}{3^{n}}$ with the only difference that n starts at 1 rather than 0 . Since $\frac{1}{3^{0}}=1$ we can say

$$
\sum_{n=1}^{\infty} \frac{1}{3^{n}}=\left(\sum_{n=0}^{\infty} \frac{1}{3^{n}}\right)-1
$$

From the previous example we know that $\sum_{n=0}^{\infty} \frac{1}{3^{n}}=\frac{3}{2}$ and thus

$$
\sum_{n=1}^{\infty} \frac{1}{3^{n}}=\frac{3}{2}-1=\frac{1}{2}
$$

that is, the series converges to $\frac{1}{2}$.

[^0]: Material developed by the Department of Mathematics \& Statistics, NUIM and supported by www.ndlr.com.

