
Squeeze Theorem for Sequences
We discussed in the handout “Introduction to Convergence and Divergence
for Sequences” what it means for a sequence to converge or diverge. We said
that in order to determine whether a sequence {an} converges or diverges,
we need to examine its behaviour as n gets bigger and bigger. We also said
the way we do this is to calculate limn→∞ an. Sometimes that limit can be
difficult to calculate and we need to employ some other techniques. One of
those techniques is to use the Squeeze Theorem for sequences. We begin with
the statement of the theorem.

Squeeze Theorem for Sequences
If limn→∞ bn = limn→∞ cn = L and there exists an integer N such that
bn ≤ an ≤ cn for all n > N , then limn→∞ an = L.

Example 1

In this example we want to determine if the sequence

{an} =

{
sin(n)

n

}
converges or diverges.

First of all, recall that −1 ≤ sinn ≤ 1 for all n. Therefore

−1

n
≤ sin(n)

n
≤ 1

n
as n > 0 for all n.

We choose {bn} =
{
− 1

n

}
and {cn} =

{
1
n

}
. We now have for this choice of

{bn} and {cn}, that bn ≤ an ≤ cn for all n. Notice that limn→∞ bn = 0 =
limn→∞ cn. Therefore by the Squeeze Theorem we can say that limn→∞ an =
0 also. In other words, the sequence {an} converges to 0.

As a direct result of the Squeeze Theorem, we also have the Absolute Value
Theorem.

Absolute Value Theorem
For the sequence {an}, if limn→∞ | an |= 0 then limn→∞ an = 0
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Example 2

Suppose we want to determine whether the sequence

{bn} =

{
(−1)n

n2 + 2

}
converges or diverges. Using the Absolute Value Theorem we see that

lim
n→∞

∣∣∣∣ (−1)n

n2 + 2

∣∣∣∣ = lim
n→∞

|(−1)n|
|n2 + 2|

= lim
n→∞

1

n2 + 2
= 0

Therefore by the Absolute Value Theorem, {bn} =
{

(−1)n
n2+2

}
converges to 0.

Try the following exercises for practice. In each case, use the Squeeze Theo-
rem or the Absolute Value Theorem to determine if the sequence converges
or diverges.

(a)

{an} =

{
(−1)n

1

n

}
(b)

{an} =

{
2 +

sin(n)

n

}
(c)

{an} =

{
4 +

cos(n)√
n

}
(Hint: For parts (b) and (c), recall that −1 ≤ sinx ≤ 1 and −1 ≤ cosx ≤ 1
for all x.)

Solutions
(a) Converges to 0. (b) Converges to 2. (c) Converges to 4.
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