Using L'Hôpital's Rule to Find Limits of Sequences

We discussed in the handout "Introduction to Convergence and Divergence" what it means for a sequence to converge or diverge. We said that in order to determine whether a sequence converges or diverges, we need to examine its behaviour as n gets bigger and bigger. We also said the way to do this is to calculate the $\lim _{n \rightarrow \infty} a_{n}$. Sometimes the limit can be difficult to calculate and we need to try some other techniques. Consider the following example.

Example 1

Suppose we wish to determine whether the sequence

$$
\left\{a_{n}\right\}=\left\{\frac{\sqrt{n}}{e^{n}}\right\}
$$

converges or diverges. As usual, we want to examine the behaviour of this sequence as n gets bigger and bigger, in order to determine if it converges or diverges. We begin by noticing that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{e^{n}}=\frac{\lim _{n \rightarrow \infty} \sqrt{n}}{\lim _{n \rightarrow \infty} e^{n}}
$$

will produce the indeterminate form $\frac{\infty}{\infty}$. The question is, how do we cope with this. Recall in the handout "Determining Convergence and Divergence of Sequences Using Limits", we said that if f is a function of a real variable such that $\lim _{x \rightarrow \infty} f(x)=L$ and if $\left\{a_{n}\right\}$ is a sequence such that $f(n)=a_{n}$ for every possible integer n, then $\lim _{n \rightarrow \infty} a_{n}=L$. We use this along with a theorem called L'Hôpital's Rule which deals with our situation. We state a version of it here:

L'Hôpital's Rule

If $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}$ produces an indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$, then $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=$ $\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}$, provided the limit on the right of the equals sign exists and $g^{\prime}(x) \neq 0$.

Note that you can use L'Hôpital's rule repeatedly in any one question. (See Example 2 below.)

In Example 1 above, we could let $f(x)=\sqrt{x}$ and $g(x)=e^{x}$. So $\frac{f(n)}{g(n)}=$ $\frac{\sqrt{n}}{e^{n}}=a_{n}$. We can now write:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n}=\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)} & =\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}(\sqrt{x})}{\frac{d}{d x}\left(e^{x}\right)}
\end{aligned}
$$

Material developed by the Department of Mathematics \& Statistics, N.U.I. Maynooth and supported by the NDLR (www.ndlr.com).

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(x^{\frac{1}{2}}\right)}{\frac{d}{d x}\left(e^{x}\right)}=\lim _{x \rightarrow \infty} \frac{\frac{1}{2} x^{-\frac{1}{2}}}{e^{x}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{2 \sqrt{x} e^{x}}=0
\end{aligned}
$$

Therefore we conclude that the sequence $\left\{a_{n}\right\}$ converges to 0 .

Example 2

Once again, let's suppose we wish to determine whether the sequence

$$
\left\{b_{n}\right\}=\left\{\frac{(\ln n)^{2}}{n}\right\}
$$

converges or diverges. We begin by remarking that

$$
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{(\ln n)^{2}}{n}=\frac{\lim _{n \rightarrow \infty}(\ln n)^{2}}{\lim _{n \rightarrow \infty} n}
$$

will produce the indeterminate form $\frac{\infty}{\infty}$. Proceeding as in Example 1, we let $f(x)=(\ln x)^{2}$ and $g(x)=x$. So $\frac{f(n)}{g(n)}=\frac{(\ln n)^{2}}{n}=b_{n}$. We apply L'Hôpital's rule:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} b_{n}=\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)} & =\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left((\ln x)^{2}\right)}{\frac{d}{d x}(x)} \\
& =\lim _{x \rightarrow \infty} \frac{2(\ln x) \frac{1}{x}}{1} \\
& =\lim _{x \rightarrow \infty} \frac{2 \ln x}{x}
\end{aligned}
$$

Notice that once again

$$
\lim _{x \rightarrow \infty} \frac{2 \ln x}{x}=\frac{\lim _{x \rightarrow \infty}(2 \ln x)}{\lim _{x \rightarrow \infty} x}
$$

will produce the indeterminate form $\frac{\infty}{\infty}$. We therefore use L'Hôpitals rule again.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}(2 \ln x)}{\frac{d}{d x}(x)} & =\lim _{x \rightarrow \infty} \frac{\frac{2}{x}}{1} \\
& =\lim _{x \rightarrow \infty} \frac{2}{x} \\
& =0
\end{aligned}
$$

Therefore we conclude that the sequence $\left\{b_{n}\right\}$ converges to 0 .

Exercises

In each of the following, use L'Hôpital's Rule to determine if the sequence converges or diverges.
(a) $\left\{a_{n}\right\}=\left\{\frac{\ln (n+1)}{\sqrt{n}}\right\}$
(b) $\left\{a_{n}\right\}=\left\{\frac{n}{\ln (n)}\right\}$
(c) $\left\{a_{n}\right\}=\left\{\frac{e^{2 n}}{n}\right\}$
(d) $\left\{a_{n}\right\}=\left\{\frac{x^{2}}{e^{5 x}}\right\}$

Solutions

(a) Converges to 0.
(b) Sequence diverges.
(c) Sequence diverges.
(d) Converges to 0 .

