Introduction to Sequences

Frequently in mathematics we are interested in patterns that appear in lists of numbers. Often we try to find a formula or a rule that would generate the list or pattern in the numbers. A sequence is a function whose domain is the natural numbers and we usually think of a sequence as a list of numbers. For example:

$$
\begin{array}{cccccccccc}
1, & 2, & 3, & \cdot & \cdot & \cdot & n, & \cdot & \cdot & \cdot \\
\downarrow & \downarrow & \downarrow & \cdot & \cdot & \cdot & \downarrow & \cdot & \cdot & \cdot \\
a_{1}, & a_{2}, & a_{3}, & . & . & . & a_{n}, & \cdot & \cdot & .
\end{array}
$$

The number in the $n^{\text {th }}$ position on the list, i.e. a_{n}, is called the $n^{\text {th }}$ term and the whole sequence is written as $\left\{a_{n}\right\}$.

A sequence can be finite or infinite and random or governed by some rule or formula. Consider the sequences below:

$$
\begin{aligned}
\left\{a_{n}\right\} & =\{2,7,27,50\} \\
\left\{b_{n}\right\} & =\{2,4,6,8\} \\
\left\{c_{n}\right\} & =\{3,6,9,12, \ldots . .\}
\end{aligned}
$$

It is useful to be able to refer to a particular element in a sequence. So using the sequence $\left\{a_{n}\right\}$ for illustration, we refer to the first element in the list, 2 , as a_{1}. The second element, 7 , as a_{2} and so on like that. (Similarly for the sequence $\left\{b_{n}\right\}$, we would refer to the first element, 2 , as b_{1}. The second element, 4 , as b_{2} and so on like that also.) The numbers $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ are the terms of the sequence. For the above sequences we remark:

- The sequence $\left\{a_{n}\right\}$ is finite and there seems to be no obvious pattern.
- The sequence $\left\{b_{n}\right\}$ is finite and there does appear to be a pattern to the sequence. Each term is the previous term with 2 added to it.
- The sequence $\left\{c_{n}\right\}$ is infinite and there does appear to be a pattern to the numbers. Each term is the previous term with 3 added to it.

We said above that we are frequently interested in patterns that appear in sequences. It is often useful to try to find a formula to generate the sequence. Consider the sequence $\left\{c_{n}\right\}$ above. We said that the elements of the sequence are increasing by 3 each time. Hopefully you can see that we could generate all the terms in the sequence using the formula:

$$
c_{n}=3 n
$$

[^0]Try the following exercises for practice.
(a) Let $\left\{a_{n}\right\}$ be a sequence where $a_{n}=n+3$. Write out the first 10 terms of the sequence.
(b) Let $\left\{a_{n}\right\}$ be a sequence where $a_{n}=2 n-3$. Write out the first 10 terms of the sequence.
(c) The first 5 terms of a sequence are given by $\left\{a_{n}\right\}=\{1,4,9,16,25, \ldots\}$ Find a formula for the $n^{\text {th }}$ term of this sequence.
(d) The first 5 terms of a sequence are given by $\left\{b_{n}\right\}=\{4,7,10,13,16, \ldots\}$ Find a formula for the $n^{\text {th }}$ term of this sequence.
(e) The first 5 terms of a sequence are given by $\left\{c_{n}\right\}=\{-1,2,-3,4,-5, \ldots\}$ Find a formula for the $n^{\text {th }}$ term of this sequence.

Solutions

(c) $a_{n}=n^{2}$
(d) $b_{n}=3 n+1$
(e) $c_{n}=(-1)^{n} n$

[^0]: Material developed by the Department of Mathematics \& Statistics, N.U.I. Maynooth and supported by the NDLR (www.ndlr.com).

