Determining Convergence and Divergence of Sequences Using Limits

We discussed in the handout "Introduction to Convergence and Divergence for Sequences" what it means for a sequence to converge or diverge. We said that in order to determine whether a sequence $\left\{a_{n}\right\}$ converges or diverges, we need to examine its behaviour as n gets bigger and bigger. The way we do this is to calculate $\lim _{n \rightarrow \infty} a_{n}$. Before we look at an example we first state a theorem.

Theorem

Let L be a real number. Let f be a function of a real variable such that $\lim _{x \rightarrow \infty} f(x)=L$. If $\left\{a_{n}\right\}$ is a sequence such that $f(n)=a_{n}$ for every positive integer n , then $\lim _{n \rightarrow \infty} a_{n}=L$

As we saw in the handout "Introduction to Sequences", a sequence can be thought of as a function of n. This means that we can use the methods we know for calculating the limit of a function of a real variable to find the limit of a sequence.

Example 1

In this example we want to determine if the sequence

$$
\left\{a_{n}\right\}=\left\{\frac{n^{2}+2 n+5}{2 n^{2}+4 n-2}\right\}
$$

converges or diverges. Using the theorem above, if we let $f(x)=\frac{x^{2}+2 x+5}{2 x^{2}+4 x-2}$ then $f(n)=\frac{n^{2}+2 n+5}{2 n^{2}+4 n-2}=a_{n}$. In order to examine the sequence's behaviour as n gets bigger and bigger, we need to find $\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+5}{2 n^{2}+4 n-2}$.

We can now use standard methods (see handout "Limits to Infinity") to calculate the limit.

[^0]We write

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+5}{2 n^{2}+4 n-2} & =\lim _{n \rightarrow \infty} \frac{\frac{n^{2}}{n^{2}}+\frac{2 n}{n^{2}}+\frac{5}{n^{2}}}{\frac{2 n^{2}}{n^{2}}+\frac{4 n}{n^{2}}-\frac{2}{n^{2}}} \\
& =\lim _{n \rightarrow \infty} \frac{1+\frac{2}{n}+\frac{5}{n^{2}}}{2+\frac{4}{n}-\frac{2}{n^{2}}} \\
& =\frac{1+0+0}{2+0-0} \\
& =\frac{1}{2}
\end{aligned}
$$

This tells us is that if we were to let n get bigger and bigger, $\left\{a_{n}\right\}$ would get closer and closer to $\frac{1}{2}$. In other words the sequence $\left\{a_{n}\right\}$ converges to $\frac{1}{2}$.

Example 2

Once again, we want to determine if the sequence

$$
\left\{a_{n}\right\}=\left\{\frac{2 n^{3}+5}{3 n^{2}+1}\right\}
$$

converges or diverges. We proceed as in the example above.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{2 n^{3}+5}{3 n^{2}+1} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{2 n^{3}}{n^{3}}+\frac{5}{n^{3}}}{\frac{3 n^{2}}{n^{3}}+\frac{1}{n^{3}}} \\
& =\lim _{n \rightarrow \infty} \frac{2+\frac{5}{n^{3}}}{\frac{3}{n}+\frac{1}{n^{3}}}
\end{aligned}
$$

A little thought reveals that as n goes to infinity, the numerator goes to 2 and the denominator goes to 0 . This means the $\left\{a_{n}\right\}$ will increase without bound. In other words $\lim _{n \rightarrow \infty} a_{n}=\infty$. We therefore conclude that the sequence $\left\{a_{n}\right\}$ diverges.

Try the following exercises for practice. Determine in each case if the sequence converges or diverges.
(a) $\left\{a_{n}\right\}=\left\{\frac{5 n^{3}+n^{2}-6}{2 n^{3}-4 n^{2}-4}\right\}$
(b) $\left\{a_{n}\right\}=\left\{\frac{9 n^{2}-n-3}{2 n^{3}+4 n^{2}+n-4}\right\}$
(c) $\left\{a_{n}\right\}=\left\{\frac{5 n^{3}+6}{4 n^{2}+n+11}\right\}$

Solutions

(a) Converges to $\frac{5}{2}$.
(b) Converges to 0 .
(c) Diverges.

[^0]: Material developed by the Department of Mathematics \& Statistics, N.U.I. Maynooth and supported by the NDLR (www.ndlr.com).

