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1. IntrodutionGiven a Riemannian Spin-manifold M with free isometri ation of the irle we anresale the metri of M in the diretion of the orbits. The main aim of the present thesisis to ompute the limit of the �-invariant of equivariant twisted Dira operators whenthe orbits are shrinked. For that purpose the Atiyah-Patodi-Singer index theorem formanifolds with boundary will be applied to the dis bundle assoiated to M . The indexof the Dira operator will be shown to vanish if the salar urvature M and the onne-tions on the anonial omplex line bundle of the Spin-struture and on the twistingbundle satisfy Hithin-Lihnerowiz's estimate. O'Neill's formulae for the urvature ofRiemannian submersions yield formulae for the limit of the harateristi integral in theAtiyah-Patodi-Singer index formula.In some ases the �-invariant of the Dira operator has been omputed diretly out ofthe Dira spetrum, e.g. by Hithin (see[Hit℄) for the Berger spheres, by Seade-Steer(see [SS℄) for quotients of PSL2(R) by Fuhsian groups. There are also general formulaeby Bismut-Cheeger ([BC℄) and Dai ([Dai℄) for the adiabati limit of the �-invariant in�brations. This has reently been made expliit for S1-bundles by W. Zhang in [Zh℄ thusalso deriving formulae for the adiabati limit of �-invariants.For some invariants on zero bordant manifolds whih are de�ned by hoosing a zerobordism one an �nd expressions involving �-invariants. These are more intrinsi in thesense that one an ompute them within the manifold. Instead of hoosing a zero bordismone has to hoose a Riemannian metri.Examples:� The Rohlin invariant of an (8k + 3)-dimensional Spin-boundary is the redutionmodulo 16 of the signature of a Spin-zero bordism. This is well-de�ned beause bya theorem of S. Ohanine (see [O℄) the signature of a losed (8k+4)-dimensionalmanifold is divisible by 16 and by a result of Novikov the signature is additiveunder the operation of glueing two manifolds along a ommon boundary. In [ML℄the Rohlin invariant is expressed as a linear ombination of �-invariants of Diraoperators twisted with ertain tensor powers of the omplexi�ed tangent bundle.� the Eells-Kuiper invariant lassifying 7- and 11-dimensional spheres up to di�eo-morphism (see [EK℄). In [Don℄ the Eells-Kuiper invariant of a stably parallelizableSpin-boundary is shown to be a linear ombination of the �-invariants of the Diraoperator and the signature operator for a metri whih is indued by an immer-sion in Eulidean spae suh that the indued onnetion on the normal bundle istrivial. Suh metris exist for stably parallelizable manifolds.� the relative index on ylinders of Gromov-Lawson ([GL2℄) whih is related to thedi�eomorphism invariants of Krek and Stolz as we will desribe in more detailnow.



2 IntrodutionThere is the following di�eomorphism lassi�ation for a ertain type of 7-dimensionalsimply-onneted manifolds in [KS1℄ and [KS2℄, Theorem 3.1.Theorem 1. Let M and N be 7-dimensional simply-onneted simultaneously Spin- ornon-Spin-manifolds with H2( � ;Z)�= Z, generated by u, say, and H4( � ;Z)�= Z=n gener-ated by u2. Then M is di�eomorphi to N if and only if sx(M) = sx(N) for x = 0; u; 2u.For a generalization of this theorem to the ase of arbitrary �nitely generated freeH2(M ;Z), see [Ber℄. The invariant s0 is a generalization of the Eells-Kuiper invariant.The di�eomorphism invariants sx are redutions modulo Z of real valued invariants oftwisted Spin-Dira strutures de�ned as follows: Consider Spin-manifolds M of odddimension n = 2k � 1 with Spin-struture �M and a unitary vetor bundle � of rankr < k over M . De�ne rational numbers ak byak = (1=(2k+1(2k�1 � 1)) if k � 0 mod 2;0 if k � 1 mod 2:For even k the rational number ak is minus the quotient of the oeÆients of pk=2 in Âand L, so that h(�)e1(�)=2Â(p(M)) + rakL(p(M)) does not involve pk=2. Assume that(M;�; �) has the following properties:(i) (M;�; �) is zero bordant in 
Spin(BU(r)).(ii) Expand h(�)e1(�)=2Â(p(M))+rakL(p(M)) = P (p(M); (�); 1(�)) as a polynomi-al P in the Pontrjagin lasses p(M) = P pi(M) and the Chern lasses (�) =Pri=0 i(�) and 1(�). If m is a monomial of degree 2k in this polynomial Pwe require that m = ab with monomials a, b,  of positive degree suh thata(p(M); (�); 1(�)) and b(p(M); (�); 1(�)) vanish rationally.Given a Riemannian metri g onM and onnetions !� and !� on the anonial omplexline bundle of � and on �, de�ne, following [KS3℄, a rational number:s(M;�; �; g; !�; !�) := indexD+W + rak sign(W;M)(2) � he1(�W )=2 h(�W )Â(p) + rakL(p) j [W;M ℄iwhere (W;�W ; �W ) is a Spin-BU(r)-manifold with boundary (M;�; �). The operatorD+W is the twisted Dira operator on W onstruted with extensions of (g; !�; !�) to Wwhose restritions to a ollar neighbourhood M � I of M = �W in W are indued from(g; !�; !�) on M . If k is even then sign(W;M) is the signature of the quadrati form onHk(W;M ;R) given by the relative up produt. For odd k de�ne sign(W;M) := 0.For the evaluation of he1(�W )=2 h(�W )Â(p)+ rakL(p) j [W;M ℄i = P (p(M); (�); 1(�)) in(2) we have, for every monomialm = ab of degree 2k of P , to replaem(p(M); (�); 1(�))by �a[ a(p(M); (�); 1(�))[ (p(M); (�); 1(�)) to get a relative ohomology lass. Here�a is any inverse image of a(p(M); (�); 1(�)) under the restrition map H4i(W;M ;R) !H4i(W ;R).Sine the index is always an integer the redued invariants(M;�; �) := s(M;�; �; g; !�; !�) mod Zdoes not depend on the hoie of the metri g nor on the hoie of the onnetions !�and !� on M . The invariants of the lassi�ation theorem are sx = s(M;�; �) where



1. INTRODUCTION 3� is the omplex line bundle with �rst Chern lass x and � is a Spin-struture withanonial omplex line bundle �. Sine H3(M ;Z) = 0 the manifolds M admit a Spin-struture whih is determined by its anonial omplex line bundle beause the manifoldsare simply-onneted (see setion 2, [LM℄).Applying the Atiyah-Patodi-Singer index formula for manifolds with boundary to (W;M)(see 2.4) the s-invariant may be expressed in terms of the �-invariants of twisted Diraoperators DM!�;!� and the signature operator S on M : We denote by 1(!�W ), h(!�W )and p(gW ) the �rst Chern form, the Chern harater form and the Pontrjagin form of theonnetions !�W , !�W and the Levi-Civita onnetion of the metri gW on W . Thens(M;�; �; g; !�; !�) = ZW �e1(!�W )=2 h(!�W )Â(p(gW )) + rakL(p(gW ))�(3) � �(DM!�;!� ) + dimkerDM!�;!�2 � rak�(S)� he1(�W )=2 h(�W )Â(�p) + rakL(�p) j [W;M ℄i= ��(DM!�;!� ) + dimkerDM!�;!�2 � rak�(S)(4) + ZM d�1 �e1(!�)=2 h(!�)Â(p(g)) + rakL(p(g))� :Here d�1 �e1(!�)=2 h(!�)Â(p(g)) + rakL(p(g))� is de�ned as follows: Every monomialmof degree 2k of P as in ondition (ii) fators asm = ab where we an hoose �a;�b 2 
�(M)suh that a(p(g); ((!�); 1(!�)) = d �a and b(p(g); ((!�); 1(!�)) = d�b. De�ned�1(m(p(g); ((!�); 1(!�))) := �a ^ b(p(g); ((!�); 1(!�)) ^ (p(g); ((!�); 1(!�)):Then by Stoke's Theorem RM d�1(m(p(g); ((!�); 1(!�))) does not depend on the hoieof �a. This also shows that s is well-de�ned by (2). Moreover (4) extends the de�nition(2) to non zero bordant twisted Spin-manifolds (M;�; �).For a ompat manifold X of odd dimension with Spin-struture � and arrying avetor bundle � let fg� ; !�� ; !�� )g be a smooth family of metris and onnetions de�nedfor � 2 I = [0; 1℄ and onstant near � = 0 and � = 1. The family fg� ; !�� ; !��)g�2[0;1℄determines a metri on the ylinder Z = X � I and a onnetion for the Spin-strutureindued from X and a onnetion on the pull-bak of � to Z. The index of the twistedSpin-Dira operator DZ on Z only depends on the values of (g� ; !�� ; !��) for � = 0 and� = 1. Following Gromov-Lawson ([GL1℄) it therefore makes sense to de�nei((g0; !�0 ; !�0); (g1; !�1 ; !�1)) := indexD+Z :If (M;�; �) satis�es (ii) we an use (2) to geti((g0; !�0 ; !�0); (g1; !�1 ; !�1)) = s((M;�; �; g0; !�0 ; !�0) _[ � (M;�; �; g1; !�1 ; !�1))= s(M;�; �; g0; !�0 ; !�0)) + s(�(M;�; �; g1; !�1 ; !�1))= s(M;�; �; g0; !�0 ; !�0))� s(M;�; �; g1; !�1 ; !�1)� dimkerDM!�1 ;!�1



4 Introdutionbeause s is additive under disjoint union and the �-invariant and the integral in (4) altertheir signs if the orientation is reversed whereas dimkerDM!�1 ;!�1 remains unhanged.For a twisted Spin-manifold (X;�; �) let S+(X;�; �) be the spae of all triples (g; !�; !�)for whih Hithin-Lihnerowiz's estimate of Theorem 2.2.6 holds. If the familyfg� ; !�� ; !�� )g�2[0;1℄ stays in S+(X;�; �) then the twisted Spin-Dira struture on theylinder also satis�es Hithin-Lihnerowiz's estimate and we have indexD+Z = 0 andalso dimkerDX!�i ;!�i = 0 for i = 0; 1. Thus (see [KS3℄):Theorem 5. For a manifold (M;�; �) satisfying (ii) the real valued funtions(M;�; �; g; !�; !�) = �12 �(DM!�;!� )� rak�(S)+ ZM d�1 �e1(!�)=2 h(!�)Â(p(g)) + rakL(p(g))�is onstant on the path omponents of the spae S+(M;�; �) of all triples (g; !�; !�) forwhih the Hithin-Lihnerowiz estimate of Theorem 2.2.6 holds.In the speial ase of untwisted Spin-manifolds we get that s(g) := s(g; !�; !�) 2 R,where !� and !� are trivial onnetions, is onstant on the path omponents of S+, thespae of metris with positive salar urvature. In [KS3℄ this fat is used to prove thaton some Wallah spaes (see setion 8) the spae of metris of positive setional urvatureis not onneted.For a Riemannian manifold M with a free isometri and geodesi ation of the irleS1 let (g; !�; !�) 2 S+(M;�; �) be a stritly equivariant twisted Spin-Dira struture.By Theorem 4.2.1 the index of the Dira operator of an extension of (g; !�; !�) over theassoiated dis bundle vanishes. By (2) the s-invariant is therefore determined by theharateristi lasses of a zero bordism for (M;�; �). With regard to the formulae (3) and(4) for the s-invariant Theorem 4.1.1 alulates the defet of s from being asymptotiallyunder anonial variation a spetral invariant. For example the limit of s0(g) for g 2S+(M) on an equivariantly parallelizable S1-manifold M is determined by the limits of�-invariants beause the quotient manifold is then also parallelizable and it is immediatefrom Theorem 4.1.1 that the integral in 4 vanishes.
It is a pleasure for me to thank Prof. Dr. Matthias Krek for his enouraging and stim-ulating advie during my work on this thesis and also for generously sharing his insightinto mathematis. I am also indebted to Rainer Jung who has helped me a lot with theomputer alulation in setion 8 and to him and Stephan Klaus for proof-reading thepresent thesis. Moreover I owe muh to numerous fruitful disussions with Dr. FrankBermbah, Anand Dessai, Prof. Dr. Wolfgang L�uk and Dr. Peter Teihner.Finally I want to thank the Max-Plank Institute for Mathematis in Bonn for the op-portunity to use the Mathematia program on their omputer.



1. INTRODUCTION 5LeitfadenThe �rst part of the present thesis is designed �rstly to reall the basi onepts of Spin-manifolds, the Chern-Weil homomorphism, the Atiyah-Patodi-Singer index formula forDira operators and Riemannian submersions and seondly to provide some elementaryfats onerning Spin-Dira strutures on dis bundles. In the seond part we stateand prove formulae for the �-invariant of Dira-operators on manifolds M arrying afree S1-ation and a stritly S1-equivariant Spin-Dira struture. To that end we showthat the index of twisted Dira operators on the assoiated dis bundle vanishes if theSpin-Dira struture on M ful�lls the Hithin-Lihnerowiz estimate. The omputationof the adiabati limit of the integral in the index formula applied to DE then yields thedesired formulae for the �-invariant. The third part presents a reipe to ompute the�-invariant of a ompat normal homogeneous Riemannian manifold admitting a non-trivial homogeneous ation of the irle. As an example the �-invariant on the Wallahspaes is given for the normal metri indued from the Cartan-Killing form on SU(3).



6 Introdution



1Basi Conepts2. Preliminaries & NotationThroughout this thesis we deal with smooth oriented ompat manifolds whih we usuallyassume onneted and smooth maps between them. A smooth map f : X ! Y has thedi�erential df : TX ! TY . The set of smooth real-valued funtions on X will be writtenas C1X. The set of setions of a �bre bundle � : E ! X over a manifold X is denotedby �� = �E. If � : E ! X is an oriented metri vetor bundle we will also write� : PSO(E) = PSO(�) ! X for its oriented orthonormal frame bundle. The k-forms onX with values in a vetor bundle E over X are 
k(X;E) = �Hom(�kTX;E). By d wealso denote the exterior derivative d : 
k(X;E) ! 
k+1(X;E) for a trivialized vetorbundle E.2.1. Prinipal Fibre Bundles and Connetions.Let � : P ! B be a prinipal G-�bre bundle, where G is a Lie group ating from theright on P . The Lie group G ats on its Lie algebra g via the adjoint representation.The tangent bundle along the �bres of P is isomorphi to ker d� = P � g so we anidentify 
�(P ; g) := 
�(P ;P �g) �= 
�(P ; ker d�). A 1-form ! 2 
1(P ; g) is a (prinipal)onnetion on � if it is vertial (i.e. !(v) = v if d�(v) = 0 for v 2 TP ) and G-equivariant(i.e. !(vg) = Adg!(v) for all g 2 G and v 2 TP ). A onnetion ! an also be viewed asa vertial projetion V : TP ! ker d�. The horizontal projetion omplementary to V isH = 1�V and we de�ne 
 = H�d!. We use the de�nition of [KN1℄ for d. Espeially wehave d!(x; y) = 1=2(x!(y)�y!(x)�!([x; y℄)). This 2-form 
 2 
2(P ; g) = 
2(P ;P �g)is horizontal and equivariant, hene it is pulled bak via � from a form 
 2 
2(B;P�Gg)alled the (prinipal) urvature of !.For the linear Lie groups over F = R or C there is an equivalent notion of ovariantderivative on an F -vetor bundle � : E ! X over a manifold X: This is an F -linear mapr : �E 
 �TX �! �Es
 x 7�! rxssatisfying rfxgs = f(grxs+ x(g)s)for all vetor �elds x on X, setions s of E and smooth funions f , g on X.The urvature tensor R 2 
2(X; End(E)) of r is de�ned asRx;y = r[x;y℄ � [rx;ry℄:A straightforward alulation shows that Rx;ys is C1X-linear in x, y and s, so we reallyget a tensor �eld. 7



8 1. BASIC CONCEPTSLet W be a representation of G. If � : E = P �G W ! X is assoiated to the prinipalG-�bre bundle � then ! indues a ovariant derivative r on � by rxs = �xs where �x isthe horizontal lift of x 2 TX to TP with respet to ! and the setion s of � is onsideredas a G-equivariant funtion P ! W . If W is faithful then ! is determined by r. Therepresentation indues a map P �G g! End(E). The urvature tensor R of r and theimage 
 of the prinipal urvature form under this map are related byR = �2
:The metri g on a Riemannian manifoldX will sometimes be written as g(x; y) = hx j yi.The Levi-Civita onnetion (ovariant derivative) r on X is the unique metri torsionfree onnetion on the tangent bundle of a Riemannian manifold and is given by theformula 2hrxy j zi = xhy j zi+ yhx j zi � zhx j yi(2.1.1) + h[x; y℄ j zi � h[x; z℄ j yi � h[y; z℄ j xifor arbitrary vetor �elds x, y and z on X.Reall the notions of equivariant bundles and onnetions over a manifold X arrying anation of a group H: An equivariant bundle over X is a �bre bundle � : P ! X togetherwith an ation of H on its total spae P overing the ation on X. A prinipal G-�brebundle � : P ! X is alled equivariant if this ation of H on P ommutes with theation of G.An equivariant onnetion ! 2 
1(P ; g) on an H-equivariant prinipal G-�bre bundlewill be alled stritly equivariant if the orbits of H are horizontal with respet to !. Asan example onsider a Riemannian H-manifold X. If the ation of H is geodesi i.e. theorbits of H are totally geodesi in X then the Levi-Civita onnetion on X is stritlyequivariant.Fixing a homomorphism � : K ! G of Lie groups a K-struture for � is a prinipalK-�bre bundle � : Q ! X together with an isomorphism Q �K G ���! P of prinipalG-bundles or equivalently a K-equivariant map Q ��! P over X. An H-equivariantK-struture is a K-struture together with an H-ation on Q ommuting with the ationof K and suh that � is H-equivariant. A (H-equivariant, stritly H-equivariant) K-Dira struture for a prinipal �bre bundle � with onnetion !� is a K-struture � for� together with a (H-equivariant, stritly H-equivariant) onnetion !� on � for whihd� Æ !� = !� Æ d�.We will on�ne our disussion to the ase of free H-ations on X. Then equivariant (prin-ipal) bundles and stritly equivariant onnetions over X are indued from (prinipal)bundles and onnetions over the quotient X=H. This orrespondene is biunique.



2. PRELIMINARIES & NOTATION 92.2. Dira Operators.Referenes for this setion are [LM℄, [ABS℄, [AS3℄.2.2.1. Spin-Dira strutures.LetX be a Riemannian manifold and � a real oriented metri vetor bundle overX of rankn with oriented orthonormal frame bundle � : PSO(�)! X. Let Spin(n) �Spin! SO(n) bethe non-trivial double overing and de�ne Spin(n) = Spin(n)�Z=2U(1). In the notationof the previous setion onsider the representationK = Spin(n) �Spin�! SO(n) = Gindued by �Spin . For n > 2, � is the non-trivial prinipal U(1)-bundle over SO(n). Thusa Spin-struture on � is a prinipal U(1)-bundlePSpin(�) ��! PSO(�);whose restrition to any �bre of PSO(�) is the anonial prinipal U(1)-bundle �Spin . For� : PSO(X)! X we all � : PSpin(X)! PSO(X) a Spin-struture on X.The anonial U(1)-bundle of � is�(�) : PU(1)(�) := PSpin(�)=Spin(n) = PSpin(�)�Spin(n) U(1) �! X:Thus we have a ommutativ diagramPSO(X) ~� � PSO(X)�X PU(1)(�) �0 � PSpin(X)??y ??yX �(�) � PU(1)(�)where �0 is a twofold overing and � = ~� Æ �0 and the square is a pull bak diagram.The redution modulo 2 of the �rst Chern lass 1(�) := 1(�(�)) 2 H2(X;Z) is theseond Stiefel-Whitney lass w2(�) and Spin-strutures on � exist if w2(�) is the redu-tion modulo 2 of an integral lass  2 H2(X;Z). The group H2(X;Z) = V etC1 (X) =PrinU(1)(X) of isomorphism lasses of prinipal U(1)-bundles over X ats transitivelyand e�etively on the set Spin(�) of isomorphism lasses of Spin-strutures on �. Aprinipal U(1)-bundle � over X maps � to ���
 �. The anonial U(1)-bundle �(�) ismapped to �(���
 �) = �2 
 �(�).A Spin-Dira struture (�; !�) on X is a Spin-struture � together with a onnetion onPSpin(X) ! X whih is ompatible with the Levi-Civita onnetion. Suh onnetionsorrespond biuniquely to arbitrary onnetions !� on �(�). This orrespondene is givenas follows:Denoting the prinipal Levi-Civita onnetion on PSOX by !X we get a onnetion � =j(��!X + q�!�) on PSpin(X) where q is the quotient map PSpin(�)! PSpin(�)=Spin(n)and j is the isomorphism of Lie algebras j : so(n)� u(1) �= spin(n).If � is an H-equivariant Spin-struture on the Riemannian H-manifold X then �(�) isan H-equivariant bundle. Furthermore if H is onneted the ation of H on PSpin(X)is determined by the H-ation on PU(1)(�). Equivariant Spin-Dira strutures X orre-spond to equivariant onnetions on �(�). If the ation ofH on X is geodesi then stritly



10 1. BASIC CONCEPTSequivariant Spin-Dira strutures on X math with stritly equivariant onnetions on�(�).On Y = �X the boundary Spin-struture �� is the restrition of � to PSOY ,! PSOX.2.2.2. Dira operators.Let � be a omplex module for the Cli�ord algebra Cl(n) of the vetor spae Rn withthe negative de�nite quadrati form Q(x) = �P x2i . A module for the Cli�ord algebrais always assumed to have a Hermitian salar produt suh that multipliation by unitvetors of Rn � Cl(n) is unitary. Consider a Riemannian Spin-Dira manifold X ofdimension n with Spin-struture � and a onnetion !� on �(�). Then we have anassoiated spinor bundle S = PSpin(X)�Spin(n) � with a ovariant derivative rS deter-mined by !� and the Levi-Civita onnetion on X. Given a Hermitian vetor bundle �over X with a unitary ovariant derivative r� the tensor produt onnetion on S 
 � isr = 1
r�+rS
1. We then de�ne the Dira operator twisted with � as the ompositionD� : �(S 
 �) r�! �(S 
 � 
 T �X) l�! �(S 
 �);where l is the Cli�ord multipliation of T �X � Cl(X) on S
 � indued from the ationof the Cli�ord-bundle Cl(T �X) on S.Every omplex module for the Cli�ord algebra Cl(n) of �nite dimension over C deom-poses in irreduible modules. So it suÆes to onsider spinor bundles PSpin(X)�Spin(n)�where � is an irreduible module for Cl(n).In even dimensions n = 2k there is a unique irreduible Cl(2k)-module �2k. Whenviewed as a Spin(2k)-representation � splits in two di�erent irreduible representations�2k = �+2k � ��2k whih give rise to a splitting S = S+ � S� of the orresponding spinorbundle. With respet to this splitting D has the form � 0D+ D�0 � whereD� : �S� �! �S�:These operators twisted with a oeÆient bundle (�;r�) are denoted by D�, D�� .In odd dimensions n = 2k � 1 the modules �+2k and ��2k obtained from the irreduiblemodule �2k for Cl(2k) are the irreduible modules for Cl(2k � 1) and yield equivalentirreduible representations of Spin(2k � 1): Let v be a unit vetor in R2k orthogonal toR2k�1 . The Cli�ord ation of u 2 R2k�1 � Cl(2k � 1) on s 2 �+2k is given by s 7! �vus.The representations of Spin(2k�1) are isomorphi beause v ommutes with Spin(2k�1).Let X be a 2k-dimensional Spin-manifold with boundary Y . If SX = S+ � S� is thespinor bundle on X then the spinor bundle SY on the boundary Y is isomorphi toS+jY . The Cli�ord multipliation with u 2 TY � TX under this isomorphism is givenby u � s = �vus for s 2 S+jY where v is the inward normal vetor �eld in TXjY . Thetangential Dira operator DY (see 2.4) is the Dira operator on S+jY with this Cli�ordmultipliation.2.2.3. Lihnerowiz's vanishing theorem.Let � 2 
2(X; u(S 
 �)) be a 2-form on X with values in the skew-Hermitian endomor-phisms of S
�. Choose an orthonormal basis fe1; : : : ; eng of TxX and de�ne a Hermitian



2. PRELIMINARIES & NOTATION 11endomorphism E(�) of S 
 � asE(�)(� 
 ") = i2Xj<k �(ej; ek)(ejek� 
 ")for � 2 Sx, " 2 �x. Also de�ne jj�jj 2 C1(X) byjj�jj(x) = �minfhE(�)s j si j s 2 (S 
 �)x; jjsjj = 1g:This is minus the smallest eigenvalue of E(�). For 2-forms �; � 2 
2(X; u(S 
 �)) wehave jj�jj+ jj�jj � jj�+ �jj.Let 
� and 
� be the prinipal urvature forms of r� and !� respetively. Note that
� 2 
2(X; iR) indues the skew-Hermitian endomorphism s 7! 12
�(x; y)s on S, so thatE(
� 
 1 + 1
 
�)(� 
 ") = i2Xj<k 12
�(ej; ek)ejek� 
 "+ ejek� 
 
�(ej; ek)"As an example look at the untwisted Spin-ase (take the trivial omplex line bundle for� = X with its trivial onnetion). Hithin ([Hit℄) has omputed the funtion jj
�jj :=jj
� 
 1jj as follows: Choose an orthonormal basis fe1; : : : ; eng of T �xX suh that theurvature form 
� at the point x 2 X has the form
� = X1�i�[n=2℄�ie2i�1 ^ e2i:Then jj
�jj(x) = 12 X1�i�[n=2℄ j�ij:(2.2.4)For the Dira Laplaian D2� we have Bohner's formulaD2� = r�r + 14s+ E(
� 
 1 + 1
 
�):On a losed manifold X the operator r�r is nonnegative sine for setions s of S
 � wehave that ZXhr�rs j si = ZXhrs j rsi � 0:(2.2.5)The endomorphism 14s + E(
� 
 1 + 1 
 
�) is positive if s � 4 jj
� 
 1 + 1 
 
� jj ispositive. In this ase the kernel of D� = D+� � D�� must be trivial and indexD+� =dimkerD+� � dimkerD�� = 0.In [APS2℄, before Theorem (3.9), the same argument is shown to work on the ompatmanifoldX with boundary Y if we impose the Atiyah-Patodi-Singer boundary onditions(2.4.1) on the setions s: If the kernel of the tangential operator DY (see 2.4) is trivialthen the index of D+� equals the index of the Dira-operator D+� on L2-setions of theextension of S 
 � to the elongation X̂ = X [Y Y � [0;1[ of X. By [LM℄, Chapter II,Proposition 8.1, the di�erene between the two integrands in (2.2.5) is the divergene ofa vetor �eld w: hrs j rsi � hr�rs j si = divw. At a point x 2 X this vetor �eld isgiven by w =Pi eihreis j si in terms of a loal orthonormal framing feig of TX̂ aroundx with (rei)(x) = 0. If s 2 kerD� then the boundary onditions (2.4.1) imply that s



12 1. BASIC CONCEPTSand its ovariant derivative derease exponentially on the ylinder Y � [0;1[. Thereforethe vetor �eld w is exponentially small at in�nity. Now Green's formula shows thatRX̂hr�rs j si = RX̂hrs j rsi � 0.Thus the following vanishing theorem of Hithin ([Hit℄), Lihnerowiz ([Li℄) holds forDira operators on losed manifolds X as well as for Dira operators on ompat mani-folds with boundary and ating on setions ful�lling the Atiyah-Patodi-Singer boundaryonditions (2.4.1):Theorem 2.2.6. [Hit℄, [Li℄ Let (X; g; �; !�) be a Spin-Dira manifold with metri g ofsalar urvature s, Spin-struture � and a onnetion !� on the anonial U(1)-bundle�(�). Let D� be the Dira operator on (X; g; �; !�) twisted with a Hermitian bundle(�;r�). If 14s� jj
� 
 1 + 1
 
� jjis positive somewhere and nonnegative everywhere on X thenindexD+� = 0:On losed manifolds we atually have kerD� = 0:2.3. The Chern-Weil Homomorphism.A Lie group G ats on the R- or C -dual of the k-fold tensor produt of its Lie algebrag via the adjoint representation. We also have an ation of the symmetri group on kelements by permuting the fators. An invariant polynomial p of degree k on g is a k-formp 2 (g
 : : :
 g| {z }k )� on g whih is invariant under these ations.For a prinipal G-bundle � : P ! X with onnetion form ! we an substitute the ur-vature form 
 into an invariant polynomial p of degree k to get a form p(
) 2 
2k(X;R)or in 
2k(X; C ).Examples:(1) For an SO(n)-prinipal bundle P the Pontrjagin forms pk(!) 2 
4k(X;R) arede�ned by nXk=1 pk(!)xn�2k = det�x� 
2�� :The Pontrjagin forms of the Levi-Civita onnetion on the tangent bundle of aRiemannian manifold X with metri g will be denoted by p(g).(2) For a U(n)-prinipal bundle P the Chern forms k(!) 2 
2k(X;R) are given bynXk=1 k(!)xn�k = det�x� 
2�i� :Espeially we have 1(!) = trae i
2� :



2. PRELIMINARIES & NOTATION 13The Chern harater form h(!) 2 
2�(X;R) ish(!) = trae exp� i
2�� :2.4. The Atiyah-Patodi-Singer Index Theorem for Manifolds with Bound-ary.Let W be a ompat Riemannian manifold with boundary M and E be a vetor bundleover W . Assume that some ollar neighbourhood of M is isometri to the produtM � I" with metri gM � dt2 where I" = [0; "℄ for some " > 0, �W = M � f0g and ��tis the inward normal vetor �eld on M � I". We onsider ellipti �rst order di�erentialoperators D on E whih in this ollar neighbourhood have the form D = �( ��t +DM) fora bundle isomorphism � of E and a self-adjoint di�erential operator DM on EjM alledthe tangential operator to D. We onsider the ation of D on setions s satisfying theboundary ondition P (sjM) = 0;(2.4.1)where P is the projetion onto the span of all eigenvetors of DM with non-negativeeigenvalues.De�ne h(DM) = dimkerDM and let �(DM ; s) be the meromorphi extension of thefuntion X�2SpeDM j�j�ssgn(�)to the omplex plane. The �-invariant of DM is �(DM) = �(DM ; 0).By Â and L we denote the multipliative sequenes orresponding to the harateristipower series x=(2 sinh(x=2)) and x= tanh(x) respetively.Theorem 2.4.2. [APS1℄ Let (W; g; �; !) be an even-dimensional RiemannianSpin-manifold W with boundary M , metri g and a Spin-Dira struture (�; !). Let(�;r�) be a twisting bundle. Assume that g is isometri to the produt gM � dt2 near Mand that the restritions of ! and r� to some ollar neighbourhood M � I" are induedfrom the onnetions !M and r�M over M .Consider the Spin-Dira operator D� on W , twisted with � and ating on setions s ofS 
 � satisfying the boundary ondition (2.4.1). Let DM� be the Spin-Dira operator on(M; gM ; ��; !M) twisted with (�;r�)jM .Then indexD+� = ZW e1(!)=2 h(r�)Â(p(g))� �(DM� ) + h(DM� )2 :Note: This formula is not stated littarally in [APS1℄ but it follows from the disussionbefore formula (6.13) in [ABP℄: The point is that the integrand is omputed loally.But loally a Spin-Dira struture (�; !�) is the same as a Spin-struture twisted witha omplex line bundle (�; !�) suh that � 
 � = �(�) and !� 
 !� = !�. So h(!�) =e1(!�)=2 as forms.



14 1. BASIC CONCEPTSThe signature operator on a (4k � 1)-dimensional Riemannian manifold (M; gM) is theoperator S(gM) = �pSp : 
2�(M) ! 
2�(M) onstruted out of the Hodge �-operatorand the exterior derivative d (see [AS3℄):Sp : 
2p(M) �! 
4k�2p�2(M)� 
4k�2p(M)� 7�! (�1)k+p+1(�d� d�)�:Theorem 2.4.3. [APS1℄ Let (W; g) be a Riemannian manifold of dimension 4k withboundary (M; gM). The signature of (W;M) issign(W;M) = ZW L(p(g))� �(S(gM)):2.5. Riemannian Submersions.The ensuing formulae an be found in [Be℄, [O'N℄. Let � : (M; g) ! (B; gB) be aRiemannian submersion with totally geodesi �bres (F; gF ). Denote by V = ker d� � TMand H = (ker d�)? � TM the vertial and horizontal distributions of � and by V, Hthe orresponding orthogonal projetions. Then d�jH is isometri and d�ruv = 0 for allvertial vetor �elds u and v.Let r, R, rF , RF and rB, RB be the Levi-Civita onnetions and urvature tensors on(M; g), (F; gF ) and (B; gB). Note that by a theorem of Hermann [Her℄ all �bres of aRiemannian submersion with totally geodesi �bres are isometri.We will always denote horizontal tangent vetors ofM by a; b; ; : : : ; h and vertial vetorsby r, s, t, u, v, w.2.5.1. O'Neill's formulae.For vetor �elds x; y 2 �TM de�ne the A-tensor of O'Neill byAxy = VrHxHy +HrHxVy:If a; b are horizontal vetor �elds, then formula (2.1.1) shows thatAab = 12V[a; b℄:For a Riemannian submersion the Riemannian urvature tensor of the total spae M isgiven by O'Neill's formulae whih for submersions with totally geodesi �bres simplify tohRa;bjhi = hRBa;bjhi � 2hAabjAhi+ hAahjAbi � hAajAbhi;hRa;bjui = h(rA)abjui;hRa;bujvi = h(ruA)abjvi � h(rvA)abjui+ hAaujAbvi � hAavjAbui;hRa;ubjvi = h(ruA)abjvi+ hAaujAbvi;hRu;vwjai = 0;hRu;vwjti = hRFu;vwjti:



2. PRELIMINARIES & NOTATION 152.5.2. The Canonial Variation.The anonial variation of a metri g on M is the family of metris on M given byg� = H�g + �V�gfor � 2 R+ . Let h� j �i� = g� and r� ; R� ; A� be the ovariant derivative, Riemannianurvature tensor and A-tensor for the metri g� . ThenA�ab = Aab;A�au = �Aau;h(r�A� )abjui� = �h(rA)abjui;h(r�uA� )abjvi� = �h(ruA)abjvi+ (� � � 2)(hAaujAbvi � hAavjAbui):The dependene of R� on � is given by (see [Be℄)hR�a;bjhi� = hRBa;bjhi+ �(hAahjAbi � hAajAbhi � 2hAabjAhi);hR�a;bjui� = �h(rA)abjui;hR�a;bujvi� = �(h(ruA)abjvi � h(rvA)abjui);+(2� � � 2)(hAaujAbvi � hAavjAbui);hR�a;ubjvi� = h(ruA)abjvi� + (� � � 2)(hAaujAbvi � hAavjAbui);+� 2hAaujAbvi;hR�u;vwjai� = 0;hR�u;vwjti� = �hRFu;vwjtiF :For a funtion f : R ! R we shall write f(�) = O(�k) for � ! 0 if lim�!0 f(�)=�k existsand is �nite. The asymptoti expansion of R� for � ! 0 is thenhR�a;bjhi� = hRBa;bjhi+O(�);hR�a;bjui� = O(�);hR�a;bujvi� = O(�);hR�a;ubjvi� = O(�);hR�u;vwjai� = 0;hR�u;vwjti� = �hRFu;vwjsiF = O(�):For the salar urvature we havesg� = 1� sF + sB � � jjAjj2;where the funtion jjAjj on M is de�ned at the point p 2M byjjAjj2(p) =Xi;j hAhihj j Ahihjifor an orthonormal basis fh1; : : : hng of Hp.On the bundle TFM = V along the �bres of � there is a onnetionrV := Vr� :(2.5.3)



16 1. BASIC CONCEPTSWe have suppressed the resaling fator � in the notation here beause it follows imme-diately from (2.1.1) that rV does not depend on � .Its urvature tensor RV is given byhRVx;yu j vi = hr[x;y℄u j vi � hrxVryu j vi+ hryVrxu j vi= hRx;yu j vi+ hrxHryu j vi � hryHrxu j vi:By de�nition Ayu = Hryu. Using the formulae for the anonial variation of A wetherefore an omputehr�xHr�yu j vi� = xhHr�yu j vi� � hHr�yu j rxvi�(2.5.4) = hA�yu j A�xvi�= O(� 2)to obtain RV = VR� +O(�):At a point p 2 M hoose a basis B = fh1; : : : ; hn; u1; : : : ; umg of TpM onsisting ofhorizontal vetors fh1; : : : ; hng and vertial vetors fu1; : : : ; umg. If B is an orthonormalbasis with respet to g = g1 the asymptoti behaviour for � ! 0 of a matrix representationof the urvature tensor is:R� = 0� hR�ui j uji�=� hR�hk j uji�=�hR�ui j hli� hR�hk j hli� 1A�!0� 0� RV +O(�) O(1)O(�) RB +O(�) 1Aand the limit of R� is lim�!0R� = 0� RV �0 ��RB 1A :(2.5.5) 3. Dis BundlesIn this setion (M; gM ; �M ; !M) will always be a Riemannian manifold of dimensionn + 1 with metri gM , arrying a free isometri and geodesi ation of the irle S1 andan equivariant Spin-Dira struture (�M ; !M). Then the orbit spae B = M=S1 is amanifold and there is a metri gB on B suh that the quotient map � :M ! B beomesa prinipal S1-bundle and a Riemannian submersion with totally geodesi �bres. Bythe theorem of Hermann there is a positive real number � suh that all �bres of � areisometri to S1� ,! C , a irle of radius � in C �= R2 with its standard metri. Weonstrut extensions of the metri and the Spin-Dira struture onM to the dis bundle�D : DE =M �S1 D ! B of the assoiated omplex line bundle �C : E =M �S1 C ! Bto �. The dis D � C of radius Æ > � will be endowed with a metri suh that �D isisometri to S1� .



3. DISC BUNDLES 173.1. Assoiated Bundles.A tool for onstruting Riemannian submersions with totally geodesi �bres is the fol-lowingTheorem 3.1.1. [Vi℄, see also [Be℄ Let � : P ! B be a prinipal G-bundle, G a Liegroup, with onnetion ! over a Riemannian manifold (B; gB). Also let (F; gF ) be aRiemannian G-manifold (i.e. G ats isometrially for gF ). On the total spae of theassoiated �bre bundle �
F : E := P �G F ! B there is then a unique metri gE suhthat:(1) the �bres of � are totally geodesi submanifolds of (E; gE) and isometri to (F; gF ),(2) �
F : (E; gE)! (B; gB) is a Riemannian submersion and(3) the horizontal distribution of TE is assoiated to !.3.2. Some Metris on Dis Bundles.Let !� be the onnetion on � whose horizontal distribution is the horizontal distributionof the Riemannian submersion �, i.e. (ker d�)? = ker!�. On C n f0g onsider thevetor�elds ~u and v given by polar oordinates:~u�(reit) = ��t�(reit)v�(reit) = ��r�(reit)for funtions � on C n f0g, r 2 R+ and t 2 R. Let the metri gC on C n f0g expressed inthe basis f~u; vg be given by the matrix0� f(r)2 00 1 1Afor some funtion f : R+0 �! [0; �℄whih extends to an odd smooth funtion f on R with f 0(0) = 1 to ensure that themetri gC extends from C n f0g to the whole of C . We also �x some real number  with0 <  < Æ and require that f(r) = � if r � . Then near its boundary S1� the dis D � Cwith radius Æ equipped with this metri beomes isometri to a ylinder S1 � [; Æ℄.Take !� and this metri on C to onstrut the metri gE on E by the theorem of [Vi℄.The horizontal distribution assoiated to !� is then the horizontal distribution of theRiemannian submersion �C and we have isometri embeddings into E of B as the zerosetion and of the anonial variation of M by(M; gf(�)2=�2) =M� = fx 2 E j d(x;B) = �g ,! E;where d is the distane funtion on (E; gE). Espeially (M; g) is embedded as the bound-ary of the assoiated dis bundle DE = fx 2 E j d(x;B) � Æg.



18 1. BASIC CONCEPTSAssoiated to the vetor �elds ~u, u = ~u=jj~ujj and v are vertial vetor�elds on DE n Bwhih we denote by the same letters. Using that v ommutes with all basi vetor�eldsof � we get rvv = rvu = 0;ruv = f 0f u;ruu = �f 0f v;rav = 0 for every horizontal vetor �eld a:At a point with distane � from the zero setion in E the salar urvature of the �breF = C is sF = �2f 00(�)f(�) :In order to ompute the funtion jjAjj on E we �x a point e 2 E with �(e) = b 2 B,d(e; B) = � and hoose an orthonormal basis fh1; : : : ; hng for TbB for some b 2 B.For arbitrary vetors x; y 2 TbB, their horizontal lifts �x; �y 2 TeE, and extensions tohorizontal vetor �elds also denoted by �x, �y, the A-tensor is given by A�x�y = 12V[�x; �y℄. Wehave that h[�x; �y℄ j vi = 0, sine the vetor�elds �x, �y are vetor�elds on the submanifoldM� whih is perpendiular to the vetor�eld v. HeneA�x�y = 12h[�x; �y℄ j uiu = �1i h
�(x; y)~u j uiu= i
�(x; y)f(�)u;where 
� is the urvature form of !�. By de�nition,jjAjj2 =Xi;j hA�hi�hj j A�hi�hji =Xi;j �
�(hi; hj)2f(�)2:Sine f(�) � � if e 2 DE we havesM� = sB � f(�)2�2 jjAjj2 � sB � jjAjj2 = sMÆ = sMand the salar urvature of DE is estimated bysDE � sF + sM = �2f 00f + sM :(3.2.1)3.3. Spin-Dira Strutures.We will onsider two Spin-Dira srutures on a �xed equivariant Spin-struture �M onM . Suh Spin-strutures M are obtained from Spin-strutures on B and vie versa. ASpin-struture �B : PSpin(B)! PSO(B) on B indues the Spin-struturePSpin(M) := ��(PSpin(B)�Spin(n) Spin(n+ 1))??y�MPSO(M) = ��(PSO(B)�SO(n) SO(n+ 1))



3. DISC BUNDLES 19on M . The anonial bundle of �M is �(�M) = ���(�B). If !M is a stritly equivariantonnetion on �(�M) then !M = ��!B for some onnetion !B on �(�B).The equivariant Spin-struture �M extends to a Spin-struture �DE on the dis bundleDE whih is indued from the Spin-struture �B and the anonial Spin-struture�� : PSpin(�) =M �U(1) Spin(2)!M = PSO(�) of the prinipal S1-bundle �:PSpin(DE) = ��(PSpin(B)�B PSpin(�))�Spin(n)�Spin(2) Spin(n+ 2)??y�DEPSO(DE) = ��(PSO(B)�B PSO(�))�SO(n)�SO(2) SO(n+ 2)Its anonial bundle is �(�DE) = ��D(�(�B)
�). The anonial isomorphism to ��D�(�B)outside the zero setion is not equivariant. Putting !DE = ��D(!B 
 !�) we get anequivariant Spin-Dira struture (�DE; !DE) on DE. Restritions to M of suh Spin-Dira strutures will be referred to as boundary Spin-strutures. They are equivariantbut not stritly equivariant.In order to extend the stritly equivariant Spin-Dira struture (�M ; !M = ��!B) fromM over DE we pik a smooth funtion : R+0 �! [0; 1℄suh that for the same real number  as in setion 3.2 and some � 2℄0; [ we have(1)  (�) = 1 if � 2 [0; �℄,(2)  (�) = 0 if � � :Then the funtion  (d(�; B)) whih we will also denote by  is smooth on DE.By !0 we denote the trivial onnetion on ��D�jDEnB indued from its anonial trivialisa-tion. The Spin-Dira strutures (�M ; ��!B) and (�M ; ��!B
!0) onM are equivariantlyisomorphi and we an extend (�M ; ��!B 
 !0) to all of DE by!DE = ��D!B 
 ( ��D!� + (1�  )!0):For the urvature 
DE = d!DE of !DE we therefore get
DE = ��D
B 
 1 + 1
 (d (��D!� � !0) +  ��D
�):(3.3.1)Let fd~u; dvg and fdu; dvg be the framings of the vertial distribution dual to f~u; vg andfu; vg respetively. In terms of the metri these 1-forms are given by du = hu j �i,dv = h~v j �i and d~u = h~u j �i=h~u j ~ui = ihu j �i=f . Then��D!� � !0 = id~u = if du 2 
1(DE nB; iR)and the form d (��D!� � !0) is given byd (��D!� � !0) = � 0f idu ^ dv(3.3.2)



20 1. BASIC CONCEPTS3.4. Spin-Strutures.Reall that a Spin-struture �X : PSpin(X) ! PSO(X) on a manifold X of dimension nanonially indues a Spin-Dira struture (�CX ; !) by taking the assoiated bundle�CX : PSpin(X) = PSpin(X)�Spin(n) Spin(n) = PSpin(X)�Z=2 U(1)! PSO(X)for �CX and the trivial onnetion !0 on�(�CX) = PSpin(X)�Spin(n) Spin(n)=Spin(n) = X � U(1)for !. Conversely given a Spin-Dira struture (�X ; !) with trivialized anonial bundleX�S1 and trivial onetion ! we an onstrut a Spin-struture �0X as restrition of theprinipal Spin-bundle PSpin(X)! PU(1)(�CX) = X � S1 to X = X � f1g.If M is a Spin-manifold then w2(M) = 0 and from the exatness of the Gysin sequeneof � we see that w2(B) = 0 or w2(B) = w2(�) = 1(�) mod 2.The Spin-struture �M onM is equivariant if and only if B is a Spin-manifold with Spin-struture �B and �M = ���B. Suh a Spin-struture does not extend to a Spin-strutureon the assoiated dis bundle DE. The indued Spin-Dira struture (�CM ; !0) is stritlyequivariant.If �M is not equivariant then there is a Spin-struture �DE on DE with �M = ��DE : �Mindues a Spin-struture on ��PSO(B) whih gives an equivariant Spin-struture �CM ifwe endow �(�CM) :M�S1 !M with the diagonal ation of S1 onM�S1. The anonialU(1)-bundle of the quotient Spin-struture �B on B of �CM is �(�B) = �(�CM)=S1 = ��i.e. � with the U(1)-ation reversed. Therfore �B indues a Spin-struture �DE on DEwith �(�DE) = � 
 (��) trivial. The desired Spin-struture is �0DE. Given a onnetion!� on � we also get an indued Spin-Dira struture (�B; !B) on B with �(�B) = ��and onnetion !B = �!�. In this ase DE is a Spin-manifold and we must havew2(B) = 1(�) mod 2.Thus the set Spin(M) of isomorphism lasses of Spin-strutures on M is given byw2(B) w2(�) Spin(M)0 0 ��Spin(B) _[ �Spin(DE)0 6= 0 ��Spin(B)w2(B) = w2(�) 6= 0 �Spin(DE)This an also be seen from the Gysin sequene of � beause H1(X;Z=2) ats transi-tively and e�etively on the set Spin(X) of isomorphism lasses of Spin-strutures on aSpin-manifold X. So jH1(X;Z=2)j = jSpin(X)j. The table above follows by ountingH1(M ;Z=2) and omparing with jH1(B;Z=2)j = jH1(DE;Z=2)j in the three ases. Thesets ��Spin(B) and �Spin(DE) are disjoint beause the restritions to a neighbourhoodof a �bre whih has the form U � S1 for some ontratible U � B give the two di�erentSpin-strutures of S1.



2The Adiabati Limit of �-Invariants4. Statement of ResultsFor the statement of the formula for the �-invariant of S1-manifolds we will adopt thefollowing onventions:(1) (M; gM) is a Riemannian manifold of odd dimension 2k + 1 with free S1-ationand a metri gM whih is invariant under this ation. Furthermore the orbits ofthe S1-ation are geodesi in (M; gM). Then on the orbit manifold B = M=S1there is a (unique) metri gB suh that the quotient map � beomes a Riemanniansubmersion with totally geodesi �bres. The onnetion !� on � is as in setion3.2 i.e. !� is the vertial projetion with respet to gM .(2) �D : DE =M �S1 D2 ! B is the assoiated dis bundle.(3) M is identi�ed with the boundary of DE. gDE is a metri on DE suh thatM � I� with the produt metri gM � dt2 is isometri to a ollar neighbourhoodof (DE; gDE) for some � > 0. By !0 we denote the trivial onnetion on ��� overthis ollar-neighbourhood.(4) g�DE and g�M are the anonial variations of the metris gDE and gM (see setion2.5.2).(5) e = 1(�) 2 H2(B;Z) is the Euler lass (�rst Chern lass) of the prinipal S1-bundle � :M ! B.(6) Let Se be the bilinear form on Hk�1(B;Z) given by(x; y) 7�! hx [ y [ e j [B℄iIf k is odd then Se is symmetri and we de�ne sign(Se) to be its signature. Foreven k we set sign(Se) = 0. Note that sign(Se) is the signature of (DE;M).(7) S(g�M) is the signature operator on (M; g�M) as in setion 2.4(8) K is a multipliative sequene with harateristi power series k (see [Hi℄). Theexamples we need here are(a) K = L, k(x) = x= tanh(x) and(b) K = Â, k(x) = x=(2 sinh(x=2)).(9) p(g�DE) is the (total) Pontrjagin form given by the Levi-Civita onnetion of themetri g�DE on DE.
21



22 2. THE ADIABATIC LIMIT OF �-INVARIANTS4.1. The Integral in The Atiyah-Patodi-Singer Index Formula.Theorem 4.1.1. The limit under anonial variation of integrals of the type as in theAtiyah-Patodi-Singer index formula is given bylim�!0 ZDEK(p(g�DE)) f(1(!)) ��D� = hK(p(TB))� (k(1(�))f(1(�))� 1)1(�) j [B℄i:where(1) f is an arbitrary power-series in one variable starting with 1.(2) ! is a onnetion on ��D� whih extends !0. Its �rst Chern form is 1(!) 2
2(DE;R).(3) � 2 
�(B;R) is arbitrary.Corollary 4.1.2. Under the anonial variation the �-invariant of the signature oper-ator tends tolim�!0 �(S(g�M))) = hL(p(TB))� 1tanh(1(�)) � 11(�)� j [B℄i � sign(Se):4.2. Dira Operators.From now on we additionally assume:(1) sM , sB are the salar urvatures of gM , gB respetively.(2) (�M ; !M) is a stritly equivariant or a boundary Spin-Dira struture on M . 
Mis the urvature form of !M .(3) (B; �B; !B) is the indued Spin-Dira struture on B as in setion 3.3. 
 isthe urvature of !B if !M is stritly equivariant and the urvature of !B 
 !� if(�M ; !M) is an equivariant boundary Spin-Dira struture. Note that 
M = ��
.(4) � is a Hermitian vetor bundle over B equipped with a Hermitian ovariant deriv-ative r� with urvature form 
� . rM is the indued onnetion over M .(5) rDE is a onnetion on the bundle ��� over DE.(6) (�DE; !DE) is a Spin-Dira struture on DE extending (�M ; !M) to DE. Over theollar neighbourhood M � I� the onnetion rDE and the Spin-Dira struture(�DE; !DE) are indued from rM and (�M ; !M) by the projetion M � I� !M .(7) D��� is the Spin-Dira operator on (DE;�DE; !DE) twisted with the oeÆientbundle (���;rDE) ating on spinors over DE satisfying the Atiyah-Patodi-Singerboundary onditions (2.4.1). The twisted Dira operator onM is denoted by DM��� .It oinides with the tangential operator to D��� by setion 2.2.2.Theorem 4.2.1. IfsM(x) > 4jj
M 
 1 + 1
 ��
� jj(x) for all x 2Mthen the index of D+��� vanishes.Sine lim�!0 s(M;g�M) = sB and sB � s(M;g�M ) for all � we therefore have:Corollary 4.2.2. If sB(b) > 4jj

 1 + 1
 
� jj(b) for all b 2 B



5. COMPUTATION OF THE INTEGRAL 23then lim�!0 indexD+���(g�DE) = 0:By Theorems 4.2.1 and 4.1.1 the Atiyah-Patodi-Singer index theorem applied to themanifold (DE;M) yields:Theorem 4.2.3. De�ne  2 H2(B;Z) by = 8<: 1(�) if (�M ; !M) is a boundary Spin-Dira struture0 if (�M ; !M) is a stritly equivariant Spin-Dira strutureThen lim�!0 12(�(DM��� ; g�M) + dimker(DM���; g�M))= hÂ(B) e1(�B)=2 h(�)� e1(�)=22 sinh(1(�)=2) � e=21(�)� j [B℄i mod Z:If in addition sB(b) > 4 jj

 1 + 1
 
� jj(b)for all b 2 B, thenlim�!0 12 �(DM���(g�M)) = hÂ(B) e1(�B)=2 h(�)� e1(�)=22 sinh(1(�)=2) � e=21(�)� j [B℄i:The �-invariant of the Spin-Dira operator of a Spin-struture �M onM is the �-invariantof the Spin-Dira operator of the assoiated Spin-Dira struture (�CM ; !M). For thequotient Spin-struture �B on B we have that 1(�B) = 0 =  if �M is equivariant and1(�B) = �1(�) if not. (see setion 3.4)5. Computation of The IntegralThe aim of this setion is to prove Theorem 4.1.1. The value of the integral in Theorem4.1.1 does not depend on the extensions gDE and ! of the metri gM and the onnetion!0 to the interior of DE. Hene we may take a metri as in setion 3 for gDE. For thismetri let the vetor �elds u, v be as in 3.2. The tangent bundle TFE = ker d�C alongthe �bres of E is the assoiated omplex line bundle to ��C �. The ollar neighbourhoodM�I� was required to arry the produt metri. Therefore rV is the ovariant derivativeof the prinipal onnetion !0 and provides an extension of !0 to all of DE whih wetake for !. We also have that Hr�yv = 0 for all � and y 2 TDE, thus the di�erene term(2.5.4) vanishes and the urvature of rV is VR� .By (2.5.5) we have lim�!0R�x;y = 0� RV �0 ��DRB 1A :The invariant polynomial P de�ning the Pontrjagin forms has the property thatP �A0 BC � = P (A)P (C). Hene the total Pontrjagin form of g�DE onverges tolim�!0 p(g�DE) = p(��DRB) ^ p(RV) = ��Dp(gB) ^ (1 + e(RV)2):



24 2. THE ADIABATIC LIMIT OF �-INVARIANTSLet e 2 
2(B;R) be an Euler form of �. Then both �e := e(RV) and ��De are Eulerforms of onnetions on the tangent bundle along the �bres TFDE, hene they must beohomologous. The restrition to the ollar M � I� of �e vanishes beause vjM�I� is thederivative in I-diretion and rxv = 0 for any vetor �eld x. The integral along the �bresis �D!�e� = 1: We have to ompute RD2 �e(u; v) for an oriented orthonormal basis u; v ofTFE. Sine the metri on E was required to be produt near the boundary, the integralis half the orresponding integral over S2 whih is the Euler harateristi of S2. Nowonsider an integral ZDEK(p(g�DE))f(1(!))��D�where we may assume that 1(!) = �e. As � ! 0 the integral onverges toZDE ��D(K(p(TB))�)K(1 + �e2)f(�e) = ZDE ��D(K(p(TB))!)(K(1 + �e2)f(�e)� 1)In view of K(1 + x2)f(x)� 1 = k(x)f(x)� 1 = x +O(x2)we may split o� �e to get ZDE ��D(K(p(TB))�) (k(�e)f(�e)� 1)�e �e:The form (k(�e)f(�e)� 1)�e �eis ohomologous to (k(��De)f(��De)� 1)��De �ewhih still vanishes near the boundary. Beause of �D!�e = 1 integration over the �breyields hK(p(TB))� (k(e)f(e)� 1)e j [B℄ito establish the formula of the theorem.6. Vanishing of The Index on Dis BundlesIn this setion we are going to prove Theorem 4.2.1. Sine the index does not dependon the metri nor on the urvature form in the interior of DE it suÆes to onstrut aspei� extension of the Spin-Dira struture on M to DE of the type as in setion 3.2for whih the Hithin-Lihnerowiz estimate holds.In the ase of boundary Spin-Dira strutures (�M ; !M) this is easy, sine we an thentake onnetions on ��D� and �(�DE) = ��D(�(�B) 
 � whih are indued from those onthe orresponding bundles over B. Hene their urvature forms are 
��D� = ��D
� and
DE = ��D
. Thus the funtionjj
DE 
 1 + 1
 
��D� jj (x) = jj

 1 + 1
 
� jj (�D(x))is onstant on the �bres of the dis bundle. Sine by assumption it is dominated by thesalar urvature of M all we must arrange for is that the �bres of DE have nonnegative



6. VANISHING OF THE INDEX ON DISC BUNDLES 25urvature. This an be ahieved by using any funtion f in the onstrution of setion3.2 with f 00 � 0 and f = � outside some nonempty interval [0; ℄.A stritly equivariant Spin-Dira struture (�M ; !M) has an extension (�DE; !DE) overthe dis bundle as in setion 3.3. But here we need to extend the onnetion !0 to ��D�indued from the anonial trivialization of ���. By (3.3.1) the urvature form of !DEon �(�DE) = ��D(�(�B)
 �) is
DE = ��D

 1 + 1
 (d (��D!� � !0) +  ��
�):We searh funtions f and  suh that4 jj
DE 
 1 + 1
 
��D�jj � �f 00f + sM ;beause by (3.2.1) the salar urvature of DE is estimated by sDE � �f 00=f + sM . Bythe triangular inequality for jj � jj we estimatejj
DE 
 1 + 1
 
��� jj � jj��D

 1
 1 + 1
 1
 
� jj+ jj1
 (d (��D!� � !MC) +  ��D
�)
 1jj:For the stritly equivariant Spin-Dira struture we have 
M = ��
. So the assumptionof the theorem is that the �rst term is dominated by the salar urvature of M :s := min(sM � 4 jj��D

 1
 1 + 1
 1
 
� jj) > 0:By (3.3.2) and (2.2.4) the seond term equals� 0=2f +  jj��D
�jj:Let m be a real number with m > s=4 and m > jj��D
�jj(b) for all b 2 B. The theoremis proved if we an solve the di�erential inequality�f 00f + s2 � 2��  02f +  m� = � 0f + 2 m(6.0.1)for funtions f and  satisfying the onditions of setion 3.2 and 3.3.The metri on the dis we are going to onstrut is a modi�ation of the "torpedo" metriof [GL1℄ and [Ga℄ looking like the rotation of the following piture around the horizontalaxis. The type of funtions  that will do is plotted below:



26 2. THE ADIABATIC LIMIT OF �-INVARIANTS

0 � %�=2  Æ �
 (�)1
s=4m0

� f(�) �

Let � be the radius of the orbits of S1 on M . For every %; � with 0 < % < � and0 < � < %�=2 there is a real number Æ and a funtion f : R+0 �! [0; �℄ suh thatf(r) = % sin(r=%), if r 2 [0; �℄;f 00(r) � 0 for all r;f(r) � %, if r � %�=2;f(r) � � near Æ, i.e for some  < Æ we have f � � on [; Æ℄:Suh a funtion f satis�es the onditions of setion 3.2 for Æ suÆiently large and thusprovides a smooth metri on the dis with radius Æ. We will show that one an �nd% 2℄0; �℄, � 2℄0; %�=2[ and � 2℄0; �[ and a funtion  : R+0 �! [0; 1℄ with  � 1 on[0; �℄ and  � 0 near Æ suh that (f;  ) solve (6.0.1). (f;  ) solve (6.0.1) on [0; �℄ if�f 00=f = 1=%2 > 2m so we need ondition 1: 2m%2 < 1:There is the following obvious fat about smooth funtions:Lemma 6.0.2. Let F be a smooth real funtion suh that F 0 � 0 and let b > a,	b > 	a > 0 be real numbers with F (b)� F (a) > 	b � 	a > 0. Then there is a smoothreal funtion 	 whih is onstant near a and near b with 	(b) = 	b, 	(a) = 	a and0 � 	0 � F 0Clearly 0 � � 0 � �f 00 � 2mf(6.0.3)



6. VANISHING OF THE INDEX ON DISC BUNDLES 27implies (6.0.1) on [0; �℄. In view if the lemma we an extend  to [0; �℄ suh that  isonstant near � and  (�) < s=4m and 6.0.3 hold ifondition 2: 1� s=4m < Z �� �f 00 � 2mf = (1� 2m%2)(os(�=�)� os(�=�))is ful�lled. If we set  �  (�) on [�; %�=2℄ then (f;  ) solve (6.0.1) on [0; %�=2℄. In orderto get a solution on [0; Æ℄ with  � 0 near Æ for some Æ we solve s=2 � � 0=%+ 2 (�)mon [%�=2;1[ for some extension of  whih is onstant near %�=2 and Æ. Again applyingthe lemma we need to �nd Æ suh thatondition 3: Z Æ%�=2 s=2� 2 (%�=2)m = (s=2� 2 (%�=2)m)(Æ � %�=2) >  (%�=2)holds.Now hoose % suÆiently small to ahieve that 1� s=4m < 1� 2m%2. Then ondition 1holds and we an aomplish ondition 2 by hoosing � suÆiently lose to 0 and � loseto %�=2. The values of  (%�=2) < s=4m and % now being �xed we an take Æ suÆientlylarge to ensure that ondition 3 holds.
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3The Homogeneous Case7. �-Invariants of Some Homogenous SpaesIn this part we will ompute the �-invariant of the Atiyah-Patodi-Singer operatorD+(g�M)on ompat homogeneous Riemannian Spin-manifolds M = G=V arrying a nontrivialhomogeneous S1-ation. The family of Riemannian metris g�M on M we will deal withis the anonial variation in the diretion of this S1-ation of a normal homogeneousmetri g = g1 whih is not at. Under these assumptions we get a prinipal S1-bundle� : M ! B = G=K for some losed subgroup K � G with K B V and K=V = S1. Weapply the Atiyah-Patodi-Singer index formula to the Dira operator on the assoiateddis bundle DE with boundary M .7.1. Preliminaries.(see [Be℄, [CE℄, [KN1℄, [KN2℄) Let G be a onneted Lie group and V � G a losedsubgroup. Also assume that the irle S1 ats homogeneously on M = G=V i.e. theS1-ation ommutes with the ation of G. Sine G ats transitively on M the isotropygroup Ip � S1 of a point p 2 M does not depend on the point p so we may assume theS1-ation free. The preimage of the orbit of S1 through the image o of 1 2 G under thequotient map G!M is a losed subgroup K � G suh that K B V and S1 �= T = K=Vats by (kV; gV ) 7! gkV for k 2 K, g 2 G. The Lie algebras of these groups will bedenoted by g, v, k, t.Normal metris on M and B are indued from bi-invariant metris on G. These metrison G orrespond to salar produts on g whih are invariant under the adjoint ationAdG of G on g. Denoting the orthogonal omplements of v and k in g by m = v? andb = k? and identifying t with the orthogonal omplement of v in k we get orthogonalsplittings of g as g = v�m = v� t� b = k� b(7.1.1)whih are invariant under the adjoint ations AdV and AdK respetively. The tangentbundle of M is assoiated to the prinipal V -bundle G!M :TM = G�(V;AdV ) m:(7.1.2)The urvature of normal metris an be omputed by O'Neill's formulae. By left invari-ane it suÆes to do so at the point o 2M . Let �x; �y; �z; �w 2 m be the left invariant vetor�elds orresponding to x; y; z; w 2 ToM �= m. The vertial projetion of the Riemanniansubmersion G!M orresponds to the projetion of g onto v. The Riemannian urvaturetensor of a normal metri on M is thenhRx;yz j wi = �14h[�y; �w℄ j [�x; �z℄i+ 14h[�x; �z℄ j [�y; �w℄i+ Sv(x; y; z; w)29



30 3. THE HOMOGENEOUS CASEwith Sv(x; y; z; w) = �14h[�x; �w℄v j [�y; �z℄vi+ 14h[�x; �z℄v j [�y; �w℄vi+ 12h[�x; �y℄v j [�z; �w℄vi:Espeially the setional urvature of M isKM(x; y) = hRx;yx j yi = 14 jj[x; y℄jj2 + 34 jj[�x; �y℄vjj2 � 0for x; y 2 m. Hene the salar urvature of M is positive i� there are x; y 2 m with[x; y℄ 6= 0.We an always replae G by its universal overing and extend V and K appropriatelywithout hanging M or B to ahieve that G is simply onneted. Then Spin-strutureson M are given by lifts of the adjoint representation V ! SO(m) over Spin(m) !SO(m) (see also [B�ar℄): The di�erential of the ation of G on M gives an ation onthe orthonormal frame bundle of M . Sine G is simply onneted this ation lifts to anation on the prinipal Spin-bundle of the Spin-struture of M . By restriting we getthe isotropy representation of V ! SO(m) and a lift V ! Spin(m). Conversely givensuh a lift V ! Spin(m) we use the V -struture (7.1.2) of the orthonormal frame bundleof M to get an assoiated Spin-struture on M .The Spin-struture onM is S1-equivariant if and only if the lift V ! Spin(m) of isotropyrepresentation V ! SO(m) extends to a lift K ! Spin(b) of the isotropy representationK ! SO(b).7.2. Computation of The �-Invariant.If the metri onM is normal then the orbits of one-parameter subgroups ofG are geodesi,thus M ! B has totally geodesi �bres. Let E be the assoiated omplex line bundleof the prinipal S1-bundle � : M = G=V ! B = G=K and onsider M = G=V as theboundary of the dis bundle DE. By assumption M has positive salar urvature andTheorem 4.2.1 shows that the index of the Spin-Dira operator on DE vanishes. So itremains to ompute the integral in the Atiyah-Patodi-Singer index formula.We will do so for the metri gDE and the Spin-Dira struture on the dis bundle DEof the type onsidered in setion 3. The vetor �eld u of setion 3 orresponds to thegenerator of t in (7.1.1). As before v 2 TDE is the radial derivative. Horizontal vetorsa 2 TDE orrespond to left invariant vetor �elds a 2 b. We will expliitly make useof the formulae in setion 3 for the ovariant derivatives on the dis: rvv = rvu = 0,ruv = f 0f u, ruu = �f 0f v and rav = 0.The A-tensor of the submersion M ! B ishAab j ui = 12 h[�a;�b℄ j �ui



7. �-INVARIANTS OF SOME HOMOGENOUS SPACES 31for horizontal vetors a; b 2 TM . For the Riemannian urvature tensor on DE at a pointwith distane r from the zero setion B � DE we gethRu;vu j vi = �f 00(r)f(r) ;hRa;uu j vi = 0;hRa;vu j vi = 0;hRa;vb j vi = 0;hRa;bv j ui = hr[a;b℄v j ui = 2f 0(r)hAab j uiM ;hRa;b j vi = 0;hRa;ua j ui = hAau j Aaui = f(r)2hAau j AauiM ;hRa;vb j ui = hrvrab j ui = vhrab j ui = f 0(r)hAab j uiM ;hRa;b j ui = f(r)hRa;b j uiM ;hRa;b j hi = hRBa;b j hi � 2hAab j Ahi+ hAah j Abi � hAa j Abhi;= hRBa;b j hi+ f(r)2(�2hAab j AhiM + hAah j AbiM � hAa j AbhiM):The exponent in h� j �iM is to indiate that this term is omputed in M with its normalmetri g = g1. We need to extend the Spin-struture �M onM to a Spin-Dira struture(�DE; !DE) on the dis bundleDE and ompute the integral overDE of the harateristiform e1(!DE)=2Â(p(gDE)). If �M is not equivariant then we an extend it to a Spin-struture to get 1(!DE) = 0 (see setion 3.4). If �M is equivariant then we let !DEbe the onnetion on ��D� with ovariant derivative rV of (2.5.3). As in setion 4.1.1the urvature of rV is RV = VR and is therefore given by the above formulae for theRiemannian urvature tensor R on DE. Hene for the �rst Chern form we obtain:1(!DE) = i
DE2� = �hRu j vi4� = 12� (f 00f du ^ dv + f 0hA j uiM):(7.2.1)The harateristi form e1(!DE)=2Â(p(gDE)) at a point x 2 DE with distane r from thezero setion an then be written ase1(!DE)=2Â(p(gDE))(x) = P (f(r); f 0(r); f 00(r)f(r) ) vol(DE; gDE);where P is a polynomial whose oeÆients are polynomials in the entries of A and RM ,RB, the latter being given by the formulae in 7.1. The volume form vol(DE; gDE) isvol(DE; gDE) = �� vol(B) ^ du ^ dv and we �nally get12 �(M) = ZDE e1(!DE)=2Â(p(gDE)) = ZDE P (f(r); f 0(r); f 00(r)f(r) ) vol(DE; gDE)= vol(B) Z Æ0 P (f(r); f 0(r); f 00(r)f(r) ) 2�f(r) drNow take any funtion f satisfying the onditions of setion 3.2 and ompute this integral.



32 3. THE HOMOGENEOUS CASE8. An Example: The Wallah SpaesAs an example look at the Wallah spaes SU(3)=�k;lU(1) for oprime integers k and l,where the embedding �k;l : U(1)! SU(3) is given byz 7�! 0BBB� zk 0 00 zl 00 0 z�k�l 1CCCA :These spaes are S1-bundles over the ag manifold B = SU(3)=K where K = T 2 isa maximal torus in SU(3) and the S1-ation is the ation of S1 �= K=�k;lU(1) as insetion 7. Sine M is simply-onneted there is a unique Spin-struture on M and thismust be equivariant for the S1-ation beause B is Spin. Therefore  = 1(!DE) is givenby (7.2.1). The normal metri g = g1 on M is indued from the Cartan-Killing form onsu(3) whih for 3� 3 matries A;B 2 su(3) is de�ned ashA j Bi = �1=2 traeAB:The radius �� of the orbits of S1 on (M; g�M) is �� = �p3=2pk2 + kl + l2. An expliitomputation on a omputer gave:ZDE p1(gDE)2 = 3 k l (k + l) (16� 412 �� 4 + 340 �� 6 � 63 �� 8)=16;ZDE p1(gDE)1(!DE)2 = 3 k l (k + l);ZDE 1(!DE)4 = 3 k l (k + l);ZDE p2(gDE) = 27 k l (k + l) �� 4 (�20 + 21 �� 2 � 4 �� 4)=32:The �-invariant of (Mk;l; g�M) for � � 1 is therefore�(D+(g�M); k; l) = 2 ZDE e1(!DE)=2Â(p2(gDE); p1(gDE))= k l (k + l) (�128� 2524 �� 4 + 2002 �� 6 � 369 �� 8)=15360:
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