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Abstract. We show that the class of strong doubling measures depends essentially

on the parameter t, and that the measure of the boundary layer of a QHBC domain
decays geometrically, if the measure is suitably strong doubling.

0. Introduction

Various areas of analysis utilize doubling measures, i.e. positive Borel measures
on Rn satisfying (some variation of) the condition:

µ(B(x, r)) ≤ Cµ(B(x, r/2)), for all x ∈ Rn, r > 0. (0.1)

For instance, Chapter I of [S2] investigates many questions in harmonic analysis
within a general framework involving a measure that satisfies a doubling condition
relative to a set of generalized balls in Rn, and [HKM] develops the potential theory
of a certain class of degenerate elliptic partial differential equations that involve
admissable weights, where a weight w is admissable if the measure w dx satisfies
certain conditions including (0.1).

Much of this analysis takes place on an open subset Ω of Rn, rather than on all of
Rn (for instance, this is often the case for PDE-related analysis). Some such results
require only a local doubling condition for balls B(x, 2r) ⊂ Ω, for instance, but often
a stronger form of doubling is required. It is then quite common to assume that the
measure is defined on all of Rn and satisfies (0.1); this, for example, is the approach
adopted in [HKM] for the definition of an admissable weight. However, there exist
rather nice measures defined on an open set Ω which are not restrictions of global
doubling measures, e.g. power-weight measures dµ = δaΩ dx for certain domains Ω,
where δΩ(x) is the distance from x to ∂Ω, and a > 0. The author wishes to thank
Paul MacManus for kindly providing an explicit example of this type (given at the
end of Section 1).
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One doubling condition applicable to measures on Ω is the boundary doubling
condition:

µ(B(x, r) ∩ Ω) ≤ Cµ(B(x, r/2) ∩ Ω), for all x ∈ Ω, r > 0. (0.2)

This condition, however, places restrictions on Ω as well as on µ, since even Lebesgue
measure does not always satisfy (0.2) (see the proof of Theorem 1.1). The concept
of a strong doubling measure, employed in [BKL] and [BO] to prove inequalities of
Poincaré and Trudinger type, is an attractive intermediate option; there are actually
a family of such strong doubling conditions indexed by a parameter 1 < t < ∞ (see
Section 1). These conditions are strong enough to do some non-local analysis, but
weaker than boundary doubling. Additionally, they are all satisfied by the measure
δaΩdx, a ≥ 0, no matter how bad the geometry of the domain Ω.

In Section 1, we determine how strong doubling conditions relate to each other
and to other doubling conditions; in particular, we show that all strong doubling
conditions are different, since there exist measures which are strong doubling for all
parameters less than t, but not for parameter t. In Section 2, we prove that if a
measure is appropriately strong doubling on a QHBC domain Ω, then the measure
of the part of Ω lying within a distance ϵ of ∂Ω is dominated by a power of ϵ. This
result, which generalizes a result of Smith and Stegenga on the Minkowski dimension
of ∂Ω, has been used in [BO, Theorem 3.10] to prove a theorem on Trudinger-type
inequalities.

1. Various doubling conditions

Throughout this paper, Ω is a proper open subset of Rn, which we may further
restrict as necessary. If B = B(x, r) is a ball, and t > 0, we write tB = B(x, tr)
(and so t−1B = B(x, r/t)). We also write δΩ(x) ≡ dist(x, ∂Ω), x ∈ Ω, and define the
quasihyperbolic length of a rectifiable path γ ⊂ Ω to be

kΩ(γ) =

∫
γ

δΩ(x)
−1ds.

The quasihyperbolic distance between x, y ∈ Ω, kΩ(x, y), is then defined to be the
infimum of kΩ(γ), as γ ranges over all paths linking x and y. There exists a quasi-
hyperbolic geodesic between any pair of points x, y ∈ Ω, i.e. a path γx,y such that
kΩ(x, y) = kΩ(γx,y); see [GO].

A (necessarily bounded) domain Ω satisfies a quasihyperbolic boundary condition
(more briefly, Ω is QHBC ) with respect to its QHBC center x0 ∈ Ω if there exists a
constant C ≥ 1 such that for all x ∈ Ω,

kΩ(x, x0) ≤ C log

(
C

δ(x)

)
.
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The QHBC path for x is the quasihyperbolic geodesic for x, x0, and the QHBC
constant of Ω, denoted CΩ, is the smallest value of C for which the above inequality
is valid.

We say that a bounded domain Ω is a John domain with respect to its John
center x0 ∈ Ω if there exists a constant K ≥ 1 such that for all x ∈ Ω, there is a path
γ = γx : [0, l] → Ω parametrized by arclength satisfying γ(0) = x, γ(l) = x0, and
δ(γ(t)) ≥ t/K. We call γx the John path for x, and we define KΩ, the John constant
of Ω, to be the smallest value of K for which the above inequality is valid.

Clearly every John domain is a QHBC domain, but it is not difficult to construct
examples of non-John QHBC domains (e.g. see [BO, Section 5]). Note that the choice
of center point x0 ∈ Ω in the definitions of John and QHBC domains is unimportant,
in the sense that if Ω is John (or QHBC) with respect to one point, it is John (or
QHBC) with respect to all of its points (of course, the John/QHBC constant tends
to infinity as we let x0 approach ∂Ω).

Suppose that 0 < t ≤ ∞ and that µ is a positive Borel measure on Ω. We say
that µ is t-doubling on Ω, denoted µ ∈ Dt(Ω), if there exists a constant C such that

µ(B ∩ Ω) ≤ Cµ(2−1B ∩ Ω) < ∞

whenever B is a ball for which t−1B ⊂ Ω (in the case t = ∞, we merely require the
center of B to lie in Ω, or equivalently in Ω). We denote by Cµ,t the smallest such
constant C for which this doubling condition is true (0 < t ≤ ∞).

Note that the t-doubling condition imposes restrictions on the boundary be-
haviour of the measure precisely when t ≥ 1. We say that a t-doubling measure µ is
a locally doubling if t < 1, strong doubling if t > 1, and boundary doubling if t = ∞.
Obviously, strong doubling is logically stronger than local doubling but weaker than
boundary doubling. In fact, it is not difficult to construct examples of a measure
that is local doubling but not strong doubling, or strong doubling but not boundary
doubling. Whether or not strong doubling depends on the parameter t ∈ (1,∞) is a
more difficult question which we now answer.

Theorem 1.1. Suppose 0 < t < t′ ≤ ∞. If t′ ≥ 1, Dt′(Ω) \Dt(Ω) is non-empty for
some QHBC domain Ω ⊂ Rn. If t′ < 1, then Dt(Ω) = Dt′(Ω) for every proper open
set Ω.

Before proving this theorem, we first state a simple but useful lemma.

Lemma 1.2. A sphere S ⊂ Rn of radius a > 0 can be covered by balls {Bi}mi=1,
centered on S and of radius b ∈ (0, a), for some m dependent only on n and b/a.

Proof. We choose a sequence of disjoint balls B′
1, B

′
2, . . . , centered on S and of radius

b/3 as long as we can continue to do so; this process must halt in a bounded number
of steps since each ball covers a fixed fraction (dependent only on b/a, n) of the
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surface measure of S. If the resulting balls are B′
1, . . . , B

′
m, then the required balls

are Bi = 3B′
i, 1 ≤ i ≤ m. �

Proof of Theorem 1.1. The equivalence of all local doubling conditions is intuitively
rather obvious, but we prove it for completeness. Assume that µ ∈ Dt(Ω) for some
t < 1, and so µ(B) ≤ Cµ(2−1B) whenever B = B(x, r), 0 < r ≤ tδΩ(x). We fix such
a ball B(x, r) with r = tδΩ, and write c = (2 − 2t)/(2 − t). Applying Lemma 1.2
with a = (1 − c/2)r, b = cr/4, to the sphere S = {y : |x − y| = a}, we get balls
B1, . . . , Bm covering S, where m is bounded by some number dependent only on n
and t. Our choice of parameters ensures that

2Bi ⊂ B(x, r),

4Bi ⊃ B(x, (1 + (c/4))r) \B(x, r),

4t−1Bi ⊂ Ω.

We deduce that µ ∈ Df(t), where f(t) = (5t − 3t2)/(4 − 2t) = (1 + c/4)t. Defining
t0 = t and tk = f(tk+1) for all k > 0, it follows iteratively that µ ∈ Dtk for every
k > 0. Note that ct/4 < 1− t and so the sequence (tk) is increasing and bounded by
1. Since f is continuous on (0, 2) and 1 is the only fixed point there, we deduce that
tk tends to 1 as k → ∞. Thus µ ∈ Dt′ for all t

′ < 1, as required.

Letting Ω be the unit ball in Rn, it is easy to find µ ∈ Dt(Ω) \D1(Ω) whenever
t < 1. For example, dµ = (1 − |x|)−1 dx is such a measure. Alternatively, we could
take dµ = [log(2/(1− |x|))]−2(1− |x|)−1 dx; in this latter case, µ(Ω) < ∞.

In the remaining cases, we give only planar counterexamples to equality; these
are easily modified to give counterexamples in any larger dimension. The domains we
use will consist of a central square with small narrow pieces attached. It is convenient
for us to take as our central square

Q0 = {(x, y) ∈ R2 : −1 < x < 0, 0 < y < 1}.

We first consider the case t′ = ∞ (even though it follows from the case t′ < ∞),
because we can produce a counterexample here with µ equal to Lebesgue measure.
Note first that Lebesgue measure lies in Dt(Ω) for all t < ∞, regardless of the domain
Ω. We define Ω to be the union of Q0 and the rectangles

Rk = {(x, y) ∈ R2 : 0 ≤ x < 2−k, 1− 2−k(1 + 1/k) < y < 1− 2−k}.

Then | · | is not boundary doubling because |2−1Bk∩Ω| ≈ |Bk∩Ω|/k, where Bk is the
ball whose center is the same as the center of Rk and whose radius is 2−k. The only
possible obstacle to Ω being QHBC is the narrowness of the rectangles Rk. Since the
length-to-width ratio of Rk, i.e. k, is dominated by the logarithm of the reciprocal of
Rk’s diameter, this is not a genuine obstacle, and it is easy to check that Ω is QHBC.

To prove the remaining cases, it suffices to find, for all 1 < t < t′ < ∞, a QHBC
domain Ω and a measure µ such that µ ∈ Dt(Ω) \Dt′(Ω). By elementary geometry,
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we note that if B is a ball inscribed in the cone Ka = {(x, y) : |y| < ax}, a > 0, then
the dilate sB, s > 1, contains the vertex of Ka if and only if a > f(s) = [s2 − 1]−1/2.
We shall define Ω to be a union of Q0 and a sequence of diamond-shaped sets Sk.
First, we define the preliminary diamond-shaped sets

S′
k = {(x, y) ∈ R2 : 0 ≤ |x| < xk, |y| < f(t′)|x− xk|},

where xk = 2−kc, and c = min{1, [4f(t′)]−1}. We then write yk = 1 − 2−k and
define Sk to be the translate of S′

k by the vector (xk − x2
k, yk). Note that the sets Sk

have a small overlap with Q0 but are disjoint from each other. The sets Sk are of a
fixed length-to-width ratio, but there is a new potential obstacle to Ω being a QHBC
domain: each Sk is attached to Q0 by a narrow neck whose width is proportional to
x2
k. However, it is a routine exercise to check that if “satellite pieces” (such as Sk)

are adjoined to the main part of the domain via bottlenecks of width proportional
to a fixed power of the length of the satellite, then this does not destroy the QHBC
condition. Consequently, Ω is QHBC.

Let us denote by Uk and Vk the vertices (−x2
k, yk) and (2xk−x2

k, yk), respectively,
of Sk. Defining

gk(x) = xk − |x− xk + x2
k|, x ∈ R,

ws(x, y) = [x2
k/gk(x)]

s, (x, y) ∈ Sk,

dµs = ws(x, y) dx dy, (x, y) ∈ Sk,

we see that µs(Sk) < ∞ for 0 < s < 2, but not for s = 2. Furthermore, as s → 2−,
more and more of the µs-mass of Sk is concentrated closer and closer to Uk and Vk.
More precisely,

lim
s→2−

µs({X ∈ Sk : min(|X − Uk|, |X − Vk|) < (2− s)xk})
µs(Sk)

= 1.

By a routine calculation, this last limit reduces to the fact that limt→0+ tt = 1.

We are now ready to define a measure µ ∈ Dt(Ω) \Dt′(Ω). Specifically, we take
dµ ≡ w(x, y) dxdy, where

w(x, y) =

{
1, (x, y) ∈ Q0,

[x2
k/gk(x)]

2−2/k, (x, y) ∈ Sk \Q0.

Note that w is continuous across the necks of the sets Sk (i.e. at x = 0) and, by the
above considerations, most of the µ-measure of Sk is concentrated very near Vk if
k is large. Considering balls inscribed in Sk near this vertex, we deduce that any
t′-doubling condition is violated for sufficiently large k. By contrast, µ is t-doubling
for all 0 < t < t′. To see this, note that balls centered in Sk satisfy a t-doubling
condition (because their t−1-dilates stay away from Vk), and that balls centered in
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Q0 actually satisfy an ∞-doubling condition (because the average value of w on Sk

is bounded, as can easily be checked). �

In the above proof, we chose Ω to be the unit ball when defining a locally doubling
measure on Ω which is not 1-doubling. By contrast, the fact that, for 1 < t ≤ ∞,
the Dt-conditions are all distinct, made use of a domain which, although QHBC, was
nevertheless rather nasty. We now show that such nastiness is in fact unavoidable.

Proposition 1.3. If Ω is a John domain, then Dt(Ω) = D∞(Ω) for all t ≥ t0, where
t0 depends only on KΩ, the John constant of Ω.

Proof. Let x0 be the John center of Ω. We fix a ball B = B(x, r), x ∈ Ω. If x0 ∈ B,
then either B ⊂ Ω, or B contains a ball of radius δΩ(x0)/2. In both cases, the
required estimate

µ(B ∩ Ω) ≤ Cµ(2−1B ∩ Ω) < ∞

follows easily from the assumption that µ ∈ Dt(Ω) for sufficiently large t = t(KΩ).
Thus we may assume that x0 /∈ B. We choose any point y on the John path for
x with respect to x0 which lies in the annulus B(x, r/3) \ B(x, r/6). The John
condition ensures that B′ = B(y, r′) ⊂ Ω where r′ = r/6KΩ. Since B′ ⊂ 2−1B and
8KΩB

′ ⊃ B, it follows that µ(B ∩ Ω) ≤ Cµ(2−1B ∩ Ω) if µ ∈ D8KΩ(Ω). �

We end this section by giving an example, essentially due to Paul MacManus, of
a strong doubling measure which is not the restriction of a global doubling measure.
Let us fix s > 0 and define dµΩ = δsΩ dx for any proper non-empty open subset Ω
of Rn. Note that µΩ ∈ Dt(Ω) for every proper open subset Ω of Rn, with doubling
constant dependent only on s, n, and t. We define Ωk to consist of the interval (0, 2)
with the points i/k removed, 1 ≤ i ≤ k. Suppose that µΩk

is a restriction of a global
doubling measure µk. Since the measure of a countable set is zero (for any global
doubling measure), µk(1, 2)/µk(0, 1) → ∞ as k → ∞. By piecing together sets like
Ωk, it is thus easy to define a set Ω such that µΩ is not the restriction of a global
doubling measure. We could for instance take Ω to be the bounded open set given
by

Ω = {2−k−1x+ 1− 2−k+1 : x ∈ Ωk, k ∈ N}.

One can even define a domain D ⊂ Rn, n > 1, such that δsD dx is strong doubling
but not the restriction of a global doubling measure. For instance, if Ω is as above,
then D = Ω× (0, 1)∪ (−1, 0]× (0, 1) is one such domain. Note that here we need the
rather well-known fact that line segments are null sets for all doubling measures on
R2; this fact is, for example, an easy corollary of Theorem 2.4).

2. Geometric decay of the measure of a QHBC boundary layer

In this section, we shall prove that the measure of the boundary layer of a
QHBC domain decays like a power of its thickness if the measure is appropriately
strong doubling. We begin, though, with some preliminary definitions and lemmas.
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If p is an exponent and S is a set, we write p′ = p/(p−1), and χS for the characteristic
function of S. If Ω is a bounded domain, we denote by diam(Ω) and inrad(Ω) its
diameter and inradius (the latter being the radius of the largest ball that fits inside
Ω). If t > 0 and f ∈ L1

loc(Ω), we define the maximal function

Mtf(x) ≡ Mt;Ω,µf(x) = sup
x∈B⊂Ω

1

µ(tB)

∫
tB∩Ω

|f | dµ,

where the supremum is taken over all balls B satisfying the indicated conditions.

Our first lemma is both a generalization of the well-known Besicovitch Covering
Theorem, and a special case of a theorem of Morse [M] (also stated in [G]), and
consequently needs no proof.

Lemma 2.1. Suppose that 0 < s < 1, that A ⊂ Rn, and that F is a family of balls
of bounded radius. If for every x ∈ A, F contains a ball Bx of radius at most R
such that x ∈ sBx, then there exist subfamilies F1, . . . ,Fk ⊂ F such that each Fi

is a pairwise disjoint collection of balls,
∪k

i=1 Fi covers A, and k ≤ N for some N
dependent only on n and s.

The following lemma belongs to the large family of results that state that various
maximal operators are bounded on Lp, 1 < p ≤ ∞.

Lemma 2.2. If Ω is a bounded domain in Rn, and µ is a positive Borel measure on
Rn, then Mt;Ω,µ is bounded on Lp(Ω, µ) for all 1 < p ≤ ∞, 1 < t. Furthermore, its
operator norm is bounded by Cp′, for some constant C dependent only on n and t.

Note that we do not assume that µ satisfies any doubling assumption. If we
assumed that µ ∈ D5t(Ω), then the alternative “5-covering lemma” (see e.g. [S1,
Section 1.1]) could be used in place of Lemma 2.1 in the following proof sketch;
additionally, the lemma would be true for all t > 0, and not just t > 1.

Sketch of proof of Lemma 2.2. As usual for results of this type, the proof consists
of an interpolation between the (obvious) boundedness of Mt on L∞(Ω, µ), and its
boundedness from L1(Ω, µ) to the Lorentz (or “weak-type”) space L1,∞(Ω, µ). Such
weak-type boundedness results are always proved by means of a covering theorem
(see, for example, [S2, Section I.3.1]). Here, we take f ∈ L1(Ω, µ), fix a cut-off value
α > 0 and, for each x such that A = {x : Mtf(x) > α}, we associate a ball B′

x such
that x ∈ B′

x ⊂ Ω, and such that the µ-average of |f | on Bx ≡ tB′
x exceeds α. By

applying Lemma 2.1 with s = 1/t to the family {Bx : x ∈ A}, weak boundedness
follows in the usual manner. �

The next lemma is also a variant of a rather well-known lemma (e.g. see [Bo]);
we include a proof for completeness. In its proof and later, we use A <∼ B if A ≤ CB
for some constant C dependent only on allowed parameters. In particular, we stress
that C is not allowed to depend on p in this lemma.
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Lemma 2.3. Suppose that 1 ≤ p < ∞, 1 < t, Ω ⊂ Rn, and µ ∈ Dt(Ω). Let F be a
family of balls contained in Ω, and let aB be a non-negative number for each B ∈ F .
Then

∥
∑
B∈F

aBχtB∥Lp(Ω,µ) ≤ Cp ∥
∑
B∈F

aBχB∥Lp(Ω,µ).

where C depends only on n, t, and Cµ,t.

Proof. Let g be a non-negative function in Lp′
(Ω, µ). Since µ is t-doubling,

A ≡
∫
Ω

(∑
B∈F

aBχtB

)
g dµ <∼

∑
B∈F

aB

[
1

µ(tB)

∫
tB∩Ω

g dµ

]
· µ(B).

We now use the fact that the bracketed quantity is dominated by Mtg(x) for every
x ∈ B, together with Hölder’s inequality and Lemma 2.2, to get

A <∼
∑
B∈F

aB

∫
B

Mtg dµ =

∫
Ω

Mtg ·
∑
B∈F

aBχB dµ

≤ ∥Mtg∥Lp′ (Ω,µ) · ∥
∑
B∈F

aBχB∥Lp(Ω,µ)

<∼ ∥g∥Lp′ (Ω,µ) · ∥
∑
B∈F

aBχB∥Lp(Ω,µ)

Taking a supremum over all g ≥ 0 in the unit ball of Lp′
(Ω, µ), the required result

follows by duality. �

In [SS], Smith and Stegenga prove that if Ω ⊂ Rn is a QHBC domain, then the
Minkowski dimension d of ∂Ω is bounded away from n, i.e. the Lebesgue measure
of the “boundary layer” decays geometrically; for more on Minkowski content and
the decay of the Lebesgue measure of boundary layers of sets, we refer the reader to
[MV]. In the planar simply-connected case, Smith and Stegenga’s result follows, with
a sharp estimate of d, from the results in [JM]. Koskela and Rohde [KR], reproved
Smith and Stegenga’s result, in the process getting the sharp estimate of d in all
dimensions. The next theorem generalizes this boundary layer decay to the setting
of strong doubling measures; our proof is based on the method of [KR].

Theorem 2.4. Suppose that Ω is QHBC and that µ ∈ Dt(Ω), for some t > t0, where
t0 ∈ (1,∞) is dependent only on n and CΩ. Then there exist C,α > 0 dependent
only on n, CΩ, and Cµ,t, such that

µ(Ωr) ≤ C(r/ diam(Ω))αµ(Ω) < ∞, for all r > 0.

In the above statement, recall that CΩ is the QHBC constant of Ω and Cµ,t is the
t-doubling constant of µ. The QHBC condition is necessary in the above theorem—
just take µ to be Lebesgue measure, and Ω ⊂ Rn to be any domain whose boundary
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has Minkowski dimension n. It is also necessary to assume a Dt(Ω) condition for
sufficiently large t. For instance, if Ω ⊂ R2 consists of all points in the unit disk
whose argument is at most θ ∈ (0, π), the measure dµ(x) = (|x| log2(2/x))−1dx does
not satisfy the conclusion of the theorem even though µ ∈ Dt(Ω) for t < sec−1 θ
(note that both sec−1 θ and CΩ tend to infinity as θ → 0).

Proof of Theorem 2.4. Assuming t ≥ t1 ≡ diam(Ω)/ inrad(Ω), the doubling condition
ensures that µ(Ω) < ∞; note also that t1 is bounded above by a constant dependent
only on CΩ. Without loss of generality, we normalize Ω so that diam(Ω) = 1, and
µ so that µ(Ω) = 1. Let ϵ = 1/CΩ and c = 1/10. For each x ∈ ∂Ω, and n > 0, we
define

An(x) = {y ∈ Rn : (1 + ϵ)−n < |x− y| < (1 + ϵ)−n+1},

χn(x) =

{
1, if ∃ y ∈ Ω ∩An(x) : d(y, ∂Ω) > cϵ|x− y|
0, otherwise,

σn(x) =
n∑

k=1

χk(x).

Koskela and Rohde [KR] prove that the boundary of a QHBC domain is what they
term an ϵ-mean porous set (with auxiliary constant c = 1/10, as here). This means
that there exists a number n0, depending only on CΩ, such that σn(x) > n/2 for
all n ≥ n0 (actually, the mean porosity of a set only implies the existence of certain
holes in its complement, but an examination of the proof of Theorem 5.1 in [KR]
reveals that one can assume that these holes are contained in the domain itself, as
we do here).

It follows, as in Theorem 2.1 of [KR], that we can find a collection F of pairwise
disjoint open balls and constants t2 > 1, j0 ≥ 1, c′ > 0, all dependent only on n and
CΩ, such that ∑

B∈F

χt2B(x) > c′j, x ∈ Ω2−j , j ≥ j0.

Note that in [KR], an initial reduction argument (which we do not use here) gives
n0 = 1, and hence j0 = 1. We define t0 = max{t1, t2}.

Writing u(x) =
∑

B∈F χt2B(x) for all x ∈ Ω, we have exp(au(x)) > exp(ac′j)
for all x ∈ Ω2−j , j > j0, and a > 0. It therefore suffices to find a constant a =
a(n,CΩ, Cµ,t) > 0 such that ∫

Ω2−j

eau(x) dµ(x) <∼ µ(Ω1).

Now,

∫
Ω2−j

eau dµ ≤
∑
k≥0

∫
Ω1

(au)k

k!
dµ ≤ µ(Ω1) +

∑
k>0

ak

k!

∫
Ω1

(∑
B∈F

χt2B

)k

dµ.
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Since µ ∈ Dt(Ω) ⊂ Dt2(Ω), we may use Lemma 2.3 to get

∫
Ω2−j

eau(x) dµ(x) ≤ µ(Ω1) +
∑
k>0

(aCk)k

k!

∫
Ω1

(∑
B∈F

χB

)k

dµ

<∼ µ(Ω1)

(
1 +

∑
k>0

(aCk)k

k!

)
.

This last series converges for all a < 1/Ce, and so we are done. �
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