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Abstract. We determine the minimal order of a semigroup whose com-
muting probability equals any specified rational value in (0, 1].

1. Introduction

Suppose F is an finite algebraic system (meaning an algebraic system of
finite cardinality), closed with respect to a multiplication operation denoted
by juxtaposition. The set of commuting pairs in F is

CP(F ) := {(x, y) ∈ F × F | xy = yx} .

and the commuting probability of F is

Pr(F ) :=
|CP(F )|
|F |2

.

Here and always, |A| denotes the cardinality of a set A.
There are some obvious restrictions on Pr(F ): since every element commutes

with itself, 1/|F | ≤ Pr(F ) ≤ 1, and so Pr(F ) ∈ (0, 1]∩Q. However in the case
of groups or rings, the possible values of Pr(F ) are much more restricted than
this. In particular, the following results hold.

• If Pr(F ) < 1, then Pr(F ) ≤ 5/8; see [5] for groups and [6] for rings.
• The set of values in both cases has only one accumulation point exceed-

ing 11/32; see [9] for groups and [2] for rings.

By contrast for semigroups, there are only the obvious restrictions. MacHale
[7] showed that if S is a semigroup, then Pr(S) can attain values arbitrarily
close to 1 (and also arbitrarily close to 0), and a more elaborate recent proof of
this result can be found in [1]. Givens [4] later showed that the set of values of
Pr(S) is dense in [0, 1], and finally Ponomarenko and Selinski [8] showed that
Pr(S) can attain every value in (0, 1] ∩Q.

In this paper, we determine the minimal order of a semigroup S satisfying
Pr(S) = r; we denote this minimal order by Ord(j, k) whenever r = j/k, j, k ∈
N. Our characterization involves the well-known p-adic valuation function
νp : Q∗ → Z, as defined in Section 2. We also need the function α : N → N,
where α(n) is the smallest number m with the property that n divides m2.
Explicitly α(p) is the positive integer satisfying νp(α(n)) = dνp(n)/2e for all
primes p, so 1 ≤ m ≤ n, and m has the same prime factors as n.

Date: 04.03.2013.
2010 Mathematics Subject Classification. 20M99.

1



2 STEPHEN M. BUCKLEY

Theorem 1. Suppose j, k ∈ N are coprime, and 1 ≤ j ≤ k. Let t ∈ N be
defined by

t =


2α(k)j, if j is even,

or if k and ν2(k) are both even,

α(k)j, otherwise,

and let r be the unique integer in [0, t) such that k = qt − r for some q ∈ N.
Then Ord(j, k) = (k + r)/j.

The proofs in [1] and [8] are fairly elaborate. In particular, Ponomarenko and
Selinski use four different families of semigroups to prove their result, and ask
if a single family could suffice. Before our proof of Theorem 1, we answer this
question in the affirmative using a certain easily constructed family of nilpotent
semigroups. To prove Theorem 1, however, we need a different construction.

After some preliminaries in Section 2, we prove Theorem 1 in Section 3.
We wish to thank a referee for pointing out an error in the original version

of Theorem 1.

2. Preliminaries

The p-adic valuation function νp : Q∗ → Z is defined for each prime p and
r ∈ Q∗ = Q \ {0} by the equation νp(r) = k, where k is the unique integer
with the property that r = pkm/n for some integers m,n coprime to p. It has
the property that νp(rs) = νp(r) + νp(s) for all r, s ∈ Q∗.

Suppose S is a semigroup. A left zero in S is an element z ∈ S satisfies the
identity zx = z, while a right zero satisfies the identity xz = z. An element
is a zero if it is a left and right zero. A left zero semigroup is a semigroup
satisfying the identity xy = x; similarly a right zero semigroup satisfies the
identity xy = y.

If S is finite, then #CP(S) := |CP(S)| and #NCP(S) := |S|2 − #CP(S) are
the number of commuting and noncommuting pairs, respectively.

Note that two elements of a semigroup direct product S = S1×S2 commute
if and only if their respective Si-components commute for i = 1, 2. This implies
the following lemma.

Lemma 2. If a semigroup S is the direct product of two finite semigroups S1

and S2, then Pr(S) = Pr(S1) Pr(S2).

The next well-known lemma says that we can adjoin a zero to any semigroup.
We omit the proof, which is trivial.

Lemma 3. Suppose S is a semigroup and S ′ := S ∪ {z}, where z /∈ S. If we
extend multiplication from S to S ′ by the equations zz = zx = xz = z for all
x ∈ S, then S ′ is also a semigroup.

The following observation is based on the fact that all diagonal elements
(x, x) of S × S lie in CP(S), and all other elements of CP(S) occur as pairs of
the form {(x, y), (y, x)}.
Observation 4. If S is a finite semigroup, then #CP(S) − |S| is even and
non-negative.

For r ∈ R, we define dre to be the least integer no less than r.
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3. Constructions and proofs

Suppose S is a nonempty set equipped with a binary operation (x, y) 7→ xy.
We say that S is 3-nilpotent if it has a distinguished element z such that
all products of three elements equal z, i.e. both u(vw) and (uv)w equal z,
regardless of the choice of u, v, w. An analogous concept could be defined with
the parameter 3 replaced by a positive integer k, but it is k = 3 that is useful
to us: it forces S to be a semigroup, but allows enough freedom for us to
construct useful examples.

We are interested in one specific family F =
⋃

n>1Fn of 3-nilpotent semi-
groups. Here, Fn is the collection of semigroups S with n distinct elements
u1, . . . , un, whose multiplication satisfies the following constraints (1 ≤ i, j ≤ n
in all cases):

(a) uiuj = u1 if {i, j} ∩ {1, 2} is nonempty, and also if i ≤ j.
(b) uiuj ∈ {u1, u2} if j < i (“subdiagonal products”).

The distinguished element z is of course u1.
The value of #CP(S) above depends only on the number of subdiagonal

products that equal u1. At one extreme, if all subdiagonal products equal
u2, then #CP(S) = (4n − 4) + (n − 2) = 5n − 6, since the only commuting
pairs are those with {i, j} ∩ {1, 2} nonempty, and those with i = j. At the
other extreme, if all subdiagonal products equal u1, then #CP(S) = n2. By
considering all intermediate choices, we get a semigroup S ∈ Fn with #CP(S)
equal any number between 5n − 6 and n2 inclusive that has the same parity
as 5n− 6, and hence the same parity as n.

Bearing in mind Observation 4, we have proved the following result.

Theorem 5. Suppose n,m ∈ N. If there is a semigroup S of order n with
#CP(S) = m, then m− n is even. For n > 1, the converse holds with S ∈ Fn

if 5n− 6 ≤ m ≤ n2.

In particular, if n is even, then there exists S ∈ Fn with #CP(S) = in for
each 5 ≤ i ≤ n. Thus for given positive integers j, k ∈ N, j ≤ k, there exists
a 3-nilpotent semigroup S ∈ F6k with #CP(S) = 36jk, and so Pr(S) = j/k.
Consequently F is the desired family of semigroups that attains every rational
probability, answering the question of Ponomarenko and Selinski [8] mentioned
in the introduction.

The proof of Theorem 1 will follow easily from the following improvement of
Theorem 5.

Theorem 6. Suppose n,m ∈ N. There is a semigroup S of order n with
#CP(S) = m if and only if n ≤ m ≤ n2 and m− n is even.

To prove Theorem 6, we will use the process of adjoining a zero to a semi-
group, but we also need what we call noncommuting sums.

Definition 7. Suppose {Si}i∈I is a collection of semigroups for some nonempty
index set such that each Si is a semigroup possesses a zero element zi. The
noncommuting sum of Si, i ∈ I, denoted

∑
i∈I Si, is a semigroup S with the

following properties:

(a) As a set, S is the disjoint union
∐

i∈I Si. (Thus we may need to first
replace each Si by an isomorphic copy of itself to ensure pairwise dis-
jointness.)
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(b) Multiplication in S is defined by the following requirements: it extends
multiplication on each Si, and the equation xy = zi holds for all x ∈ Si,
y ∈ Sj, i 6= j.

Lemma 8. Suppose Si is a semigroup with a zero for each i in a nonempty
index set I. Then the noncommuting sum

∑
i∈I Si is a semigroup. If each Si

is finite and I is finite, then

(1) #CP

(∑
i∈I

Si

)
=
∑
i∈I

#CP(Si) .

Proof. From the definition, we see that each zi is a left zero on S. We wish to
prove that u(vw) = (uv)w for all u ∈ Si, v ∈ Sj, and w ∈ Sk. This follows
from the semigroup property of Si if i = j = k, so suppose this is not so. If
i 6= j, then vw /∈ Si and so u(vw) = zi. Also, uv = zi, and zi is a left zero
on S, so (uv)w = zi. If instead i = j but k 6= i, then uv ∈ Si, so (uv)w = zi.
Also, vw = zi, so u(vw) = uzi = zi, since zi is the zero of Si.

If x ∈ Si and y ∈ Sj for some i 6= j, then xy = zi 6= zj = yx, so CP(S) =∐
i∈I CP(Si). This readily implies (1). �

Proof of Theorem 6. The proof is by induction on n. Let Pn be the proposition
that there is a semigroup S of order n with #CP(S) = m for each m ∈ N for
which m − n is even and n ≤ m ≤ n2. In fact it suffices to assume that
n+ 2 ≤ m ≤ n2 − 2, since #CP(S) = n holds if S is the left zero semigroup of
order n, and #CP(S) = n2 holds if S is a commutative semigroup of order n
(and these exist for all n). In particular, we see that P1 and P2 are true.

Assume therefore that n > 2, and assume inductively that Pk is true for all
1 ≤ k < n. By adjoining a zero to a semigroup of order k − 1, we see that
for 1 ≤ k ≤ n, there exists a semigroup S of order k that contains a zero and
satisfies #CP(S) = m for every m ∈ [3k− 2, k2] that has the same parity as k.
In particular this is true for k = n, so in order to complete the inductive step, it
suffices to show that there exists a semigroup S of order n with #CP(S) = m
for every m ∈ [n, 3n − 4] that has the same parity as n. Letting S be the
semigroup of order n defined as the noncommuting sum of a semigroup Sk of
order k < n for which #CP(Sk) = 3k − 2, and n − k copies of the semigroup
of order 1, we see from (1) that #CP(S) = n− k + (3k − 2) = n+ 2k − 2. By
letting k range over all integers between 1 and n−1, we get all required values
of #CP(S). �

Proof of Theorem 1. Let w be the least integer not less than k/jα(k), and let
e be the least even number not less than k/jα(k), so e ∈ {w,w + 1}. The
claimed value of Ord(j, k) is n2 := eα(k) if j is even, or if both k and ν2(k)
are even, and n1 := wα(k) otherwise.

Suppose S ∈ Σn, where Σn is the class of semigroups of order n ∈ N. Suppose
also that Pr(S) = j/k, or equivalently #CP(S) = n2j/k. Now #CP(S) must
be an integer, so n must be divisible by α(k), and we can write n = iα(k).
Observation 4 tells us that we can find S ∈ Σn with #CP(S) = n2j/k if and
only if #CP(S) ≥ n and #CP(S) has the same parity as n. The inequality
#CP(S) ≥ n can be rewritten as i ≥ k/jα(k), so i ≥ w. We assume from now
on that i ≥ w, and so the existence of S ∈ Σn with Pr(S) = j/k reduces to
checking the parity condition.
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If i is even, then n is also even. Also m := (α(k))2j/k is an integer, so
#CP(S) = i2m is even and the parity condition is fulfilled. Thus there exists
S ∈ Σn with #CP(S) = n2j/k, and so the minimal order is at most n2. It
remains only to decide if the minimal order is n1 or n2. In fact it equals
n1 if n2

1j/k − n1 is even, and n2 otherwise. Note that n2
1j/k = w2jk′ where

k′ := (α(k))2/k ∈ N. We assume from now on that w is odd, since otherwise
n1 = n2 and we are done.

Suppose j is even. Since j and k are coprime, k is odd, and so n1 is also
odd. But w2jk′ is even, so the parity condition is violated and the minimal
order is n2 in this case.

Suppose next that k and ν2(k) are both even, and so j must be odd. Because
ν2(k) is even, k′ is odd, and so n2

1j/k is odd. But k is even, so α(k) and n1 are
even. Again the parity condition is violated, and the minimal order is n2.

Finally suppose j is odd and either k or ν2(k) is odd. If k is odd, then α(k)
and n1 are odd, as is w2jk′. Thus the parity condition is satisfied, and the
minimal order is n1. If instead ν2(k) is odd (and so k is even), then α(k) and k′

are even, so both n1 and w2jk′ are even. Thus the parity condition is satisfied,
and the minimal order is n1. �

Finally, we give a simple alternative proof of the density of the values
of Pr(S), exploiting the readily verified fact that #NCP(S ′) = #NCP(S) in
Lemma 3. If we start with a finite noncommutative semigroup S0 of order n
with m > 0 noncommuting pairs (x, y) of elements, and we adjoin a new zero
N times for some N ∈ N, then we get a semigroup SN of order N + n with
#CP(SN) = (N + n)2−m. Thus Pr(SN) = 1−m/(N + n)2 gives probabilities
arbitrarily close to 1 as N →∞.

Lemma 2 implies that Pr(Sn) = (Pr(S1))
n if Sn is the direct product of n

copies of a finite semigroup S1. By applying this fact with Pr(S1) arbitrarily
close to 1, we deduce that the values of Pr(S) are dense in [0, 1].
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