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Abstract. We show that there exist quasigroups, and even loops, whose com-
muting probability equals any specified rational value r ∈ (0, 1]. We also char-
acterize all possible orders of quasigroups with commuting probability r.

1. Introduction

Suppose F is an finite algebraic system (meaning an algebraic system of fi-
nite cardinality), closed with respect to a multiplication operation denoted by
juxtaposition. The set of commuting pairs in F is

Comm(F ) := {(x, y) ∈ F × F | xy = yx} .
and the commuting probability of F is

Pr(F ) :=
|Comm(F )|
|F |2

.

Here and always, |A| denotes the cardinality of a set A.
There are some obvious restrictions on Pr(F ): since every element commutes

with itself, 1/|F | ≤ Pr(F ) ≤ 1, and so Pr(F ) ∈ (0, 1] ∩Q. In the case of groups
or rings, the possible values of Pr(F ) are much more restricted than this. In
particular, the following results hold:

• If Pr(F ) < 1, then Pr(F ) ≤ 5/8; see [9] for groups and [10] for rings.
• The set of values in both cases has only one accumulation point exceeding

11/32; see [15] for groups and [4] for rings.

By contrast, for semigroups, there are only the trivial restrictions. MacHale
[11] showed that if S is a semigroup, then Pr(S) can attain values arbitrarily close
to 1 (and also arbitrarily close to 0). Givens [8] later showed that the set of values
of Pr(S) is dense in [0, 1]. Ponomarenko and Selinski [14] showed that Pr(S) can
attain every value in (0, 1] ∩ Q. Subsequently, we gave an explicit formula for
the minimal order of a semigroup having any specified commuting probability [2,
Theorem 1].

Here, we examine the corresponding questions for quasigroups, and to a lesser
extent for loops. We first show that, as for semigroups, there are no nontrivial
restrictions on the possible commuting probabilities of loops (and, a fortiori, the
same is true for quasigroups).
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Theorem 1.1. For every r ∈ (0, 1]∩Q, there exists a finite loop L with Pr(L) = r.

We also characterize all values attained by the (commuting) deficiency

δ(Q) :=
|Q|2 − |Comm(Q)|

2

as Q ranges over Qn, the set of quasigroups of order n.

Theorem 1.2.

(a) If Q ∈ Qn, then δ(Q) is an integer, 0 ≤ δ(Q) ≤ n(n − 1)/2, and δ(Q) is
not equal to either 1 or 2.

(b) The values attained by δ(Q) as Q ranges over Qn include all numbers
satisfying the conditions in (a), with two exceptions: δ(Q) 6= 3 if n = 4,
and δ(Q) 6= 4 if n = 5.

Since Pr(Q) is easily obtained from δ(Q) and n, the above result allows us to
calculate the minimum order—and indeed all possible orders–of a quasigroup at-
taining any given (rational) commuting probability 0 < r ≤ 1: see Theorem 3.10.

After dealing with some preliminary material in Section 2, we prove the above
theorems in Section 3.

I wish to thank Des MacHale for suggesting this topic of research.

2. Preliminaries

A quasigroup (Q, ∗) is a nonempty set Q with a binary operation ∗ : Q×Q→ Q
such that, for each x, y ∈ Q, there exist unique elements l, r ∈ Q such that
l ∗ x = y and x ∗ r = y. We will usually denote multiplication in a quasigroup by
juxtaposition.

A loop is a quasigroup Q with a two-sided identity, i.e. an element e ∈ Q such
that ex = xe = x for all x ∈ Q. We denote by Qn and Ln the classes of all
quasigroups and loops, respectively, of order n ∈ N.

An isotopy from one quasigroup Q to another Q′ is a triple (α, β, γ) of bijections
from Q to Q′ such that

α(x)β(y) = γ(xy) . (2.1)

Note that if Q is a quasigroup, and (α, β, γ) is a triple of bijections from Q to
a set Q′, then (2.1) uniquely defines a quasigroup structure on Q′. An isotopy
of type (Id, Id, γ) will refer to such an isotopy where α and β in (2.1) are the
identity maps. In a similar fashion, we define isotopies of type (α, α, γ) or of type
(α, Id, Id).

It is convenient to associate a linear order < to the elements of Q ∈ Qn by
writing the elements as x1 < · · · < xn. We can then define the multiplication table
T (Q,<) of Q with respect to the linear order < by the rule that the (i, j)th entry
of T (Q) is xixj. We will usually simply write T (Q) in place of T (Q,<) because
we are interested only in δ(Q), and this is independent of the choice of linear
order. (Put another way, changing the linear order is equivalent to applying an
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isotopy of type (α, α, Id) between two quasigroups on the same set, (Q, ∗) and
(Q, ◦), and such isotopies preserve δ(·).)

The multiplication table T (Q) of an ordered quasigroup Q, with n = |Q| <∞,
is an order n Latin square on the symbol set Q, i.e. it is an n×n array of symbols
using the symbol set Q, where each element of Q occurs exactly once in each
row and exactly once in each column. Conversely, every order n Latin square
T = (Ti,j)

n
i,j=1 on a set Q of n symbols can (in a non-unique way) be viewed as

T (Q), where Q ∈ Qn. Thus, the determination of the possible values of Pr(Q) is
effectively a problem concerning only Latin squares, so it suffices to write down
such Latin squares rather than the associated quasigroups. However, it is often
convenient to use the language of quasigroups. In particular, we often make use
of Cn, the cyclic group of order n.

A cell of a Latin square T = (Ti,j)
n
i,j=1 is just a position (i, j), and we say that

a symbol a is in cell (i, j) if Ti,j = a.
A Latin rectangle is an r × s block of symbols, for some r, s ∈ N, where no

symbol appears twice in the same row or column. A Latin rectangle is row (or
column) balanced if the same set of symbols appear in each row (or column) of
the rectangle. Thus, for an r × s Latin rectangle to be a Latin square we must
have r = s and it must also be row balanced (or equivalently, column balanced).

A partial Latin rectangle P is like a Latin rectangle, except that we allow certain
cells to be unspecified or empty. Of those that are specified or filled, no symbol
appears twice in the same row or column. We denote empty entries in P by ∗.
For instance, the following partial Latin rectangle, with six filled cells that each
contain one of two distinct symbols a and b, will be useful later.

P3 =
∗ a b
b ∗ a
a b ∗

We say that a Latin rectangle R is consistent with a partial Latin rectangle P
of the same size if the same symbol appears in each filled cell of P as in the
corresponding cell of R.

An r × r Latin rectangle T = (Ti,j) is said to be symmetric if Ti,j = Tj,i for
all 1 ≤ i, j ≤ r, and T is said to be asymmetric otherwise. A quasigroup Q is
commutative if xy = yx for all x, y ∈ Q, or equivalently if its multiplication table
T (Q) is symmetric, and otherwise it is said to be non-commutative.

If Q is a quasigroup, then the centralizer of x ∈ Q is the set C(x) of all y ∈ Q
such that xy = yx, and the centrum C(Q) of Q is

⋂
x∈QC(x).

When we talk of a Latin subsquare or (partial) Latin subrectangle, we just mean
a Latin square or (partial) Latin rectangle that is contained in another Latin
square/rectangle. We are particularly interested in diagonal Latin subrectangles
of a Latin square T : these are the ones whose top left cell within T is (i, i) for
some i. If in fact the top left cell of a Latin subrectangle S of T is (1, 1), we call
S a corner Latin subrectangle of T .
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The commuting deficiency

δ(Q) :=
|Q|2 − |Comm(Q)|

2
of a finite quasigroup Q is half the number of non-commuting pairs in Q. If
T is a Latin square, we define δ(T ) = δ(Q), where Q is any quasigroup whose
multiplication table is T ; this is well defined. If C is a class of quasigroups or
Latin squares, then we define

δ(C) = {δ(A) | A ∈ C} .
We are interested in δ(C) for the classes C = Qn and C = Ln, n ∈ N. Studying
δ(Q) is essentially equivalent to studying Pr(Q) because

Pr(Q) = 1− 2δ(Q)

|Q|2
. (2.2)

An isotopy class can be defined for Latin squares in a manner consistent with
its definition for quasigroups: the maps (α, β, γ) used in (2.1) tell us that two
Latin squares are isotopy equivalent if one can be obtained from the other by
some combination of permutations of rows (α), columns (β), and symbols (γ).

Quasigroup isotopies do not in general preserve the commuting probability, but
they do if α = β in (2.1). We therefore define an invariance class (of quasigroups,
or of Latin squares) to be an equivalence class with respect to isotopies of type
(α, α, γ), i.e. two Latin squares are invariant equivalent if one can be obtained
from the other by matched permutations of rows and columns, and a permutation
of symbols.

It follows that, to obtain representatives of all invariance classes associated
with a fixed isotopy class, it suffices to apply isotopies of type (α, Id, Id) to a
single representative of the isotopy class; the use of such isotopies will be useful
for creating quasigroups Q of a given order with certain desired values of Pr(Q)
or δ(Q).

Suppose T is a Latin square on the symbols x1, . . . , xn. We say that T is a
normalized Latin square if the first row consists of the symbols in their chosen
order x1, . . . , xn, or a reduced Latin square if its first row and column are both in
this chosen order.

An invariance class of Latin squares always has a normalized Latin square
representative (just permute the symbols), and an isotopy class always has a
reduced Latin square representative (apply a row permutation to a normalized
Latin square). This leads us to the following observation.

Observation 2.1. If S is a set of Latin squares containing a representative of ev-
ery isotopy class of order n Latin squares—for instance the set of all reduced order
n Latin squares has this property—then to obtain δ(Qn), it suffices to compute
δ(Q) for all Latin squares obtained from elements of S by row permutations.

Suppose T = (Ti,j)
n
i,j=1 is an order n Latin square, and let A = {1, . . . , n}.

A partial transversal of T is a subset S of A × A such that no two cells are in
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the same row or column, and the elements Ti,j, (i, j) ∈ S are all distinct. A
transversal of T is a partial transversal S with |S| = n. Thus, a transversal is a
set of n cells in T , each containing a distinct symbol, and no two occupying the
same row or column.

The (standard) prolongation Prol(T, S) of a Latin square T = (Ti,j)
n
i,j=1 by a

transversal S = {Ti,ji}ni=1 is the order (n+1) Latin square T ′ = (T ′i,j)
n
i,j=1 obtained

by adding an extra row at the bottom of T and an extra column to the right of
T according to the following rules:

• T ′i,n+1 = T ′n+1,ji
= Ti,ji ;

• T ′i,ji = T ′n+1,n+1 = ω, where ω is the symbol in T ′ that is not in T ;

A special case of prolongation goes back to a paper of Bruck [1], while the more
general situation defined here goes back to Dénes and Pásztor [6]. We write
T ′ = Prol(T, S) if T ′ is the prolongation of T via S.

Note that the four cells (i, n + 1), (i, ji), (n + 1, ji), and (n + 1, n + 1) form a
Latin subsquare of T ′ as defined above. It follows that if we interchange the two
rows of this subsquare, and leave the rest of T ′ unchanged, then we get a new
Latin square T ′′. We call T ′′ the i-variant prolongation of the Latin square T by
the transversal S, and denote it by Prol(T, S; i).

It is sometimes convenient to define prolongations and (partial) transversals
in terms of quasigroups Q. A partial transversal is a subset S of Q × Q such
that the first and second coordinates of distinct elements are distinct, and such
that the products xy are distinct for each pair (x, y). A transversal is a partial
transversal such that the coordinate maps πi : S → Q, i = 1, 2, and the product
map P : S → Q, P (x, y) = xy, are all surjective. The (standard) prolongation
P := Prol(Q,S) is then a quasigroup such that as a set, P is the disjoint union
S t{ω}, and where multiplication ◦ is defined as follows, denoting multiplication
in Q by juxtaposition:

x ◦ y =


ω, (x, y) ∈ S ∪ {(ω, ω)} ,
uy, (u, y) ∈ S, x = ω ,

xu, (x, u) ∈ S, y = ω ,

xy, otherwise .

Given x0 ∈ Q, and y0 such that (x0, y0) ∈ S, we write S ′ = S \ {(x0, y0)}, and
define the x0-variant prolongation P = Prol(Q,S;x0) to be the quasigroup which
as a set is the same as Prol(Q,S), but has multiplication ◦ defined by

x ◦ y =



ω, (x, y) ∈ S ′ ∪ {(x0, ω), (ω, y0)} ,
uy, (u, y) ∈ S ′, x = ω ,

xu, (x, u) ∈ S ′, y = ω ,

x0y0, (x, y) = (ω, ω) ,

xy, otherwise .
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If |Q| < ∞—the only situation that interests us in this paper!—it is clear that
these definitions for quasigroups are consistent with the corresponding concepts
for an associated Latin square T (Q).

Suppose T = (Ti,j)
n
i,j=1 is an order n Latin square with an order m Latin

subsquare S ′. If S = (Si,j)
m
i,j=1 is another order m Latin square involving the

same symbols as S ′, then we define the patched Latin square Patch(T, S;S ′) to be
the order n Latin square obtained by putting the elements of S in place of those
of S ′ in the natural manner, i.e. if the top left entry of S ′ in T is Tp,q, then we
replace Tp+i−1,q+j−1 by Si,j for 1 ≤ i, j ≤ m, and we leave all other entries in T
unchanged. When S ′ is a diagonal subsquare of T , it is clear that

δ(Patch(T, S;S ′)) = δ(T ) + δ(S)− δ(S ′) . (2.3)

Whenever we talk of a Latin square Patch(T, S;S ′), it is implicitly assumed that
S and S ′ are of the same size, and contain the same symbols.

We will need a twisted variant of the usual direct product construction: a
twisted product of quasigroups Q1 and Q2 is any quasigroup on the Cartesian
product Q1 ×Q2 where multiplication has the form

(x1, x2)(y1, y2) = (x1 ◦x2,y2 y1, x2y2) .

Here, (Q1, ◦x2,y2) is a quasigroup for each x2, y2 ∈ Q2. We denote any such twisted
productQ asQ1

∼×Q2, although we instead writeQ = Q1×Q2 in the direct product
case in which ◦x,y is the quasigroup operation of Q1 for all x, y ∈ Q2. A twisted
product Q1

∼×Q2 can of course be obtained from Q1 ×Q2 by making n2 patches
if n = |Q2| <∞.

The p-adic valuation function νp : Q∗ → Z is defined for each prime p and
r ∈ Q∗ = Q \ {0} by the equation νp(r) = k, where k is the unique integer with
the property that r = pkm/n for some integers m,n coprime to p. It has the
property that νp(rs) = νp(r) + νp(s) for all r, s ∈ Q∗.

Lastly in this section, let us state a theorem of Cruse.

Theorem 2.2 ([5, Theorem 1]). Let Tr be an r×r symmetric Latin rectangle based
on the symbols 1, ..., n, where n > r. Denote by N(i) the number of occurrences
of the symbol i in Tr. In order for Tr to be extendible to an order n symmetric
Latin square Tn based on 1, ..., n, it is necessary and sufficient that the following
pair of conditions both hold:

(a) N(i) ≥ 2r − n for every 1 ≤ i ≤ n, and
(b) n−N(i) is even for at least r of the symbols i.

In the above theorem, Tr being extendible to Tn means that Tr is a corner Latin
subrectangle of Tn. In particular, if Tr is actually a Latin subsquare of Tn, and
T ′ = Patch(Tn, S;Tr), then δ(T ′) can be computed using (2.3).

3. Constructions and proofs

We begin with a lemma that sets the stage for our subsequent analysis.
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Lemma 3.1. For n ∈ N, let

π(Qn) = {i ∈ N | 0 ≤ i ≤ n(n− 1)/2, i 6= 1, 2} .
π(Ln) = {i ∈ N | 0 ≤ i ≤ (n2 − 3n+ 2)/2, i 6= 1, 2} .

Then δ(Qn) ⊆ π(Qn) and δ(Ln) ⊆ π(Ln).

Proof. The result is immediate verified when n = 1, 2, so we suppose that n > 2
and that Q ∈ Qn, L ∈ Ln. First, observe that all diagonal elements (x, x) of
Q × Q lie in Comm(Q), and all other elements of Comm(Q) occur in pairs of
the form {(x, y), (y, x)}. Similarly, there are 3|L| − 2 pairs guaranteed to lie in
Comm(L), namely (x, x), (1, x), and (x, 1), for all x ∈ L. It follows readily that

δ(Qn) ⊆ π(Qn) ∪ {1, 2} ,
δ(Ln) ⊆ π(Ln) ∪ {1, 2} .

It remains only to show that δ(Q) /∈ {1, 2}. Suppose Q is noncommutative,
and let us choose u not in the centrum of Q. There must be at least two distinct
elements v, w that fail to commute with u: if we had ux = xu for all x ∈ Q \ {v},
then we would also have uv = vu because of the fact that the maps x 7→ xu and
x 7→ ux are bijections. By using the same argument with v or w in place of u, we
conclude that for each x ∈ {u, v, w}, there exist at least two distinct elements y
such that (x, y) is a non-commuting pair. Thus, δ(Q) ≥ 3, as required. �

For the rest of this paper, we denote by Γ the set of all n ∈ N that satisfy the
equation δ(Qn) = π(Qn). To prove Theorem 1.2, we need to show in particular
that Γ = N \ {4, 5}. We start by showing that 4, 5 /∈ Γ.

Theorem 3.2.

(a) A Latin square T satisfies δ(T ) = 3 if and only if it is invariant equivalent
to a Latin square T ′ whose only non-commuting pairs are given by a partial
diagonal subrectangle P3 of the form

P3 =
∗ a b
b ∗ a
a b ∗

(b) A Latin square T satisfies δ(T ) = 4 if and only if it is invariant equivalent
to a Latin square T ′ whose only non-commuting pairs are given by a partial
diagonal subrectangle P4 of the form

P4 =

∗ ∗ a b
∗ ∗ b a
b a ∗ ∗
a b ∗ ∗

(c) 4, 5 /∈ Γ. In fact, 3 /∈ δ(Q4) and 4 /∈ δ(Q5).
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Proof. Suppose Q is a quasigroup. For each x ∈ Q, let Lx and Rx be the bijections
from Q to Q defined by Lx(y) = xy and Rx(y) = yx, let D(x) = Q \ C(x), and
let D(Q) = Q \C(Q). Note that y is a fixed point of the bijection gx = L−1

x ◦Rx

if and only if y ∈ C(x). Thus for all x ∈ D(Q),

• gx|C(x) is the identity map;
• gx|D(x) is a fixed-point-free bijection;
• |D(x)| ≥ 2.

We also define the bijection hx = Lx ◦R−1
x , noting that hx(yx) = xy for all y ∈ Q.

Writing C ′(x) = Rx(C(x)) and D′(x) = Rx(D(x)), the above conditions can also
be written as

• hx|C′(x) is the identity map;
• hx|D′(x) is a fixed-point-free bijection;
• |D′(x)| ≥ 2.

Given a Latin square T = (Ti,j)
n
i,j=1 on the symbol set Q = {x1, . . . , xn}, we

makeQ into a quasigroup by defining xixj = Ti,j for 1 ≤ i, j ≤ n. DefineD(x) and
D(Q) as above, and let m = |D(Q)|. Since |D(x)| ≥ 2 for all x ∈ D(Q), it follows
that δ(Q) ≥ m. On the other hand, δ(T ) cannot be larger than m(m − 1)/2,
half the number of off-diagonal elements in D(Q). It follows that if m = 3, then
δ(T ) = 3; if m = 4, then 4 ≤ δ(T ) ≤ 6; and if m > 4, then δ(T ) > 4. In
particular, δ(T ) = 3 implies m = 3 and δ(T ) = 4 implies m = 4.

Suppose now that δ(T ) = 3, and so m = 3. Writing D(Q) = {x, y, z} and
defining a new linear order ≺ with x ≺ y ≺ z ≺ w for all w ∈ C(Q), gives a
new Latin square T ′ = T (Q,≺) that is invariant equivalent to T , and has a 3× 3
corner Latin subrectangle corresponding to the elements of D(Q). Here, each of
the three elements must fail to commute with the other two elements of D(Q),
so this subrectangle is consistent with the following partial Latin subrectangle

Q3 =
∗ a b
b′ ∗ c
a′ c′ ∗

where a, b, c, a′, b′, c′ ∈ Q. Now, a 6= b and, because hx is a fixed-point free
bijection from D′(x) = {a′, b′} to itself, we see that b′ = b and a′ = a. Similarly,
since hy is a bijection from D′(y) = {a, c′} to itself, we must have a = c and
b = c′. It follows that Q3 = P3, as required in (a). Note that we describe P3 as a
Latin subrectangle rather than a Latin subsquare because there is no reason that
the missing entries in Q3 should all be the same as each other.

We next prove (b). Suppose that δ(T ) = 4, let Q be an associated quasigroup,
and let m and D(Q) be as before. We already know that m = 4 in this case, so
D(Q) = {x, y, z, w}. Each of these elements must fail to commute with exactly
two others lest the deficiency be too large, so we assume that x fails to commute
only with z and w. Thus, y must also fail to commute with z and w, and so
by imposing a new order x ≺ y ≺ z ≺ w ≺ u for all u ∈ C(Q), the new Latin
square T ′ = T (Q,≺) that is invariant equivalent to T contains a partial corner
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subrectangle of the form

Q4 =

∗ ∗ a b
∗ ∗ c d
b′ d′ ∗ ∗
a′ c′ ∗ ∗

,

where the noncommuting cells of T are precisely the filled cells of Q4.
Now, a 6= b and, because hu : D′(u)→ D′(u) is a fixed-point-free bijection for

u = x, we see that b′ = b and a′ = a. Since it is a bijection for u = y, we have
d′ = d and c′ = c. Since it is a bijection for u = z, we see that {b, d} = {a, c}, so
b = c and a = d, as required.

Finally, we prove (c). If 3 ∈ δ(Q4), then the following partial Latin rectangle
could be completed to form an order 4 Latin square:

∗ a b ∗
b ∗ a ∗
a b ∗ ∗
∗ ∗ ∗ ∗

There are only two other symbols to fit into the missing spots in the top three
rows, so the last column must repeat one of them. Thus, no such Latin square
exists.

Similarly if 4 ∈ δ(Q5), then the following partial Latin rectangle could be
completed to form an order 5 Latin square:

∗ ∗ a b ∗
∗ ∗ b a ∗
b a ∗ ∗ ∗
a b ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

There are only three other symbols to fit into the missing spots in the top four
rows, so the last column must repeat one of them. Thus, no such Latin square
exists. �

The following lemma does part of the work involved in an inductive proof of
Theorem 1.2(b): for large enough n, it will show that δ(Qn) contains “small”
target values. We will need other techniques to get larger values.

Lemma 3.3. Suppose j ∈ N. Then

δ(Qn) ⊇


⋃

1≤i≤j
δ(Qi), n = 2j,⋃

1≤i<j/2

δ(Q2i+1), n = 2j + 1.
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Proof. Suppose n = 2j and i ≤ j. We apply Theorem 2.2 with r = i to embed
an order r symmetric Latin square Tr in an order n symmetric Latin square Tn.
Condition (a) in that theorem is trivially satisfied since 2r − n ≤ 0. Condition
(b) also holds because n − N(k) = n is even for all j < k ≤ n. Thus, such an
embedding is indeed possible.

Let S ∈ Qi be such that it contains the same symbols as Ti and satisfies
δ(S) = m. By (2.3), δ(Patch(Tn, S;Ti)) = m, as required. Since we can do this
for all m ∈ δ(Qi), we get the desired containment in this case.

The case n = 2j+1 is similar except that the parity condition (b) requires that
we extend only Latin squares of odd order r = 2i+ 1, and then n−N(k) = n− r
is even for 1 ≤ i ≤ r. �

One of our main methods for finding values in δ(Qn) and δ(Ln) is to examine
twisted products Q = Cj

∼× Ck, where j, k > 1. Writing X = (u, x), Y = (v, y),
u, v ∈ Cj, x, y ∈ Ck, we have

δ(Q) = δon(Q) + δoff (Q) ,

where δon(Q) is the on-diagonal contribution, counting only (X, Y ) ∈ Comm(Q)
with x = y, and δoff (Q) is the off-diagonal contribution counting only (X, Y ) ∈
Comm(Q) with x 6= y. Whenever C is a class of quasigroups, we also define δon(C)
and δoff (C) in a manner analogous to δ(C), i.e. these are the set of possible on-
and off-diagonal contributions of quasigroups in these classes. Since the on- and
off-diagonal contributions are dependent on disjoint parts of the twisted product
construction, it follows that δ(C) is the sum of all numbers a + b, a ∈ δon(C),
b ∈ δoff (C), and so it makes sense to analyze these contributions separately.

We now give a pair of lemmas that give information about possible off- and
on-diagonal contributions of certain types of twisted products.

Lemma 3.4. Suppose j > 1. Then we have the following:

(a) For all k ≥ 2, there exists a twisted product quasigroup Q of the form
Cj
∼× Ck with δoff (Q) equal to any number in the set

Aj,k =

{
{ ji | 0 ≤ i ≤ j(k2 − k)/2, i 6= 1 }, j > 2,

{ 4i | 0 ≤ i ≤ (k2 − k)/2 }, j = 2.

(b) For all k ≥ 3, there exists a twisted product loop L of the form Cj
∼× Ck

with δoff (L) equal to any number in the set

A′j,k =

{
{ ji | 0 ≤ i ≤ j(k2 − 3k + 2)/2, i 6= 1 }, j > 2,

{ 4i | 0 ≤ i ≤ (k2 − 3k + 2)/2 }, j = 2.

Proof. We first prove (a). Associate some linear order, <, to the elements of Ck;
the choice of order is irrelevant. The twisted product operation ◦x,y, x, y ∈ Ck,
will be defined as follows:

• For all x > y, ◦x,y equals ∗, the group operation of Cj.
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• For all x < y, ◦x,y is obtained from ∗ by applying an isotopy of type
(Id, Id, γx,y). (Thus, γx,y is an arbitrary permutation of {1, . . . , j}.)
• For x = y, ◦x,y is any commutative quasigroup operation (such as that of
Cj).

If X = (u, x) and Y = (v, y) are elements of Q with x < y, then XY =
(γx,y(uv), xy), while Y X = (vu, yx) = (uv, xy) (since Cj and Ck are commuta-
tive!). Thus, XY = Y X if and only if uv is a fixed point of γx,y. Now, each
element of Cj equals uv for j choices of (u, v) as u, v range over Cj, so we get
a total contribution of js to δoff (Q) by all elements of Q × Q having the form
(X, Y ) or (Y,X), where X = (u, x), Y = (v, y), x, y is fixed with x < y, and s is
the number of non-fixed points of the permutation γx,y. Thus, this contribution
can be any number in the set

Aj = {ji | 0 ≤ i ≤ j, i 6= 1} ,

and δoff (Q) can equal any sum of (k2 − k)/2 numbers selected from Aj (allowing
repetitions). By taking all except one such number equal to either 0 or j2, and
allowing the last number to range over Aj, we get all numbers in Aj,k except those
that are equivalent to j mod j2. When j = 2 or when k = 2, there are no such
exceptional numbers in Aj,k, so we are already done.

Suppose instead that j, k ≥ 3. To get the missing numbers, just take a sum

of the form
∑k(k−1)/2

m=1 am, where a1 = 2j, a2 = j(j − 1), and am ∈ {0, j2} for
m > 1. Here, we are implicitly using the inequalities a1 ≤ j2, a2 ≥ 2j, and
k(k − 1)/2 ≥ 2, but these all hold for j, k ≥ 3.

For part (b), we simply insist that, in the above constructions, ◦e,x = ◦x,e = ∗,
and that ◦x,x is a loop operation, for all x ∈ Ck. There remain (k − 2)(k − 1)/2
choices of (x, y) ∈ Cj × Ck with x < y, and for each such choice, we get a
contribution to δoff (Q) of some number in Aj as above. The proof that the total
off-diagonal contribution can be any number in A′j,k then proceeds as before. �

Remark 3.5. The intersection number of a pair of order n Latin squares T =
(Ti,j) and T ′ = (T ′i,j) that both use the same symbol set is the number of cells
(i, j) such that Ti,j = T ′i,j. Arguing as in the above proof, we see that if Q is of

the form Cj
∼×Ck, then δoff (Q) can equal any sum of k(k− 1)/2 numbers, each of

which has the form j2 − i for some i ∈ I(j), where I(j) is the set of all possible
intersection numbers of order j Latin squares.
I(j) has been characterized by Fu [7] as follows:

I(1) = {1} ,
I(2) = {0, 4} ,
I(3) = {0, 3, 9} ,
I(4) = {0, 1, 2, 3, 4, 6, 8, 9, 12, 16} ,
I(n) = {0 ≤ k ≤ n2} \ {n2 − 1, n2 − 2, n2 − 3, n2 − 5} .
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Using this result, we can improve Lemma 3.4 when j ≥ 4 by replacing Aj,k and

A′j,k by the larger sets Ãj,k and Ã′j,k, respectively, where

Ãj,k =

{
{ i | 0 ≤ i ≤ j2(k2 − k)/2, i 6= 1, 2, 3, 5 }, j > 4,

{ i | 0 ≤ i ≤ j2(k2 − k)/2, i 6= 1, 2, 3, 5, 6, 9 }, j = 4,

Ã′j,k =

{
{ i | 0 ≤ i ≤ j2(k2 − 3k + 2)/2, i 6= 1, 2, 3, 5 }, j > 4,

{ i | 0 ≤ i ≤ j2(k2 − 3k + 2)/2, i 6= 1, 2, 3, 5, 6, 9 }, j = 4.

The restrictions on k remain unchanged, so k ≥ 2 and k ≥ 3 in the strengthened
versions of parts (a) and (b), respectively. The straightforward modifications for
these improved versions are left to the reader. We gave the weaker Lemma 3.4
because it is sufficient for our purposes, and its proof is self-contained.

Our next lemma, concerning the possible on-diagonal contributions of twisted
products, has a rather more complex statement than its off-diagonal cousin in
order to maximize its utility.

Lemma 3.6. Suppose that j ≥ 4, k > 1, and that

δ(Qj) ⊇ {i | (j2 − j)/4 ≤ i ≤ (j2 − j)/2} . (3.1)

Then we have the following:

(a) There exists a twisted product quasigroup Q of the form Cj
∼×Ck with δon(Q)

equal to any number in the set

Bj,k = δ(Qj) ∪ {i | (j2 − j)/2 < i ≤ (j2 − j)k/2} .

In particular, if j ∈ Γ, then

Bj,k = {i | 0 ≤ i ≤ (j2 − j)k/2, i 6= 1, 2} .

(b) There exists a twisted product loop L of the form Cj
∼×Ck with δon(L) equal

to any number in the set

B′j,k = δ(Qj) ∪ {i | (j2 − j)/2 < i ≤ (j2 − j)(k − 1)/2} .

In particular, if j ∈ Γ, then

B′j,k = {i | 0 ≤ i ≤ (j2 − j)(k − 1)/2, i 6= 1, 2} .

(c) Similar but weaker conclusions can be reached if (3.1) is replaced by the
weaker assumption

{i | (j2 − j)/4 < i ≤ (j2 − j)/2} ⊆ δ(Qj) . (3.2)

Specifically, the conclusions remain true if we adjust the definitions of Bj,k

and B′j,k by removing the element (j2 − j)/2 + 1.
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Proof. We first prove (a), with Q of the form Cj
∼× Ck. We label the elements of

Ck as x1, . . . , xk. For i 6= i′, the definition of ◦xi,xi′
is unimportant, so we simply

choose it to be the group operation of Cj in all cases. Pick the twisted product
operations ◦i := ◦xi,xi

so that the contribution to δon(Q) corresponding to each
xi ∈ Ck is (j2 − j)/2. Summing these yields δon(Q) = (j2 − j)k/2; this is the
largest value in Bj,k.

By hypothesis (3.1), we can alter ◦1 so as to decrease its contribution by incre-
ments of 1 until its contribution is just s := dj(j−1)/4e. Now, leave ◦1 fixed, and
alter ◦2 so as to decrease its contribution by increments of 1 until its contribution
is also s. Next, change ◦1 to a commutative operation (such as that of Cj), and
simultaneously change ◦2 back so that its contribution is (j2 − j)/2.

If k = 2, then this set of alterations has given quasigroups Q ∈ Q2j with δon(Q)
equal to all numbers between (j2− j)/2 and j2− j, inclusive. By varying ◦2 and
keeping ◦1 commutative, we get all remaining numbers in Bj,2.

If k > 2, then we need to repeat the above procedure, but using ◦r and ◦r+1 for
r = 2 in place of ◦1 and ◦2. If k > 3, we then do the same with r = 3. Continuing
in this fashion, we get quasigroups Q ∈ Qjk with δon(Q) equal to any number
between (j2− j)/2 to k(j2− j)/2, inclusive. The only remaining numbers in Bj,k

are elements of δ(Qj), and we obtain these values by taking ◦r to be commutative
for all r < k, and ◦k to be an appropriate quasigroup operation. It is clear that
Bj,k has the indicated form when j ∈ Γ.

We now prove (b) with L of the form Cj
∼×Ck. We choose ◦x,y to be the group

operation ∗ on Cj for all x, y ∈ Ck, x 6= y, and also for x = y = e, where e is
the identity of Ck. These choices give no contribution towards δon(L) but, ensure
that L is a loop. Since ◦x,x can be any quasigroup operation, for all other x ∈ Ck,
the rest of the argument proceeds as in (a).

Finally, we suppose that (3.1) is replaced by the weaker (3.2). We assume
that (j2 − j)/4 is an integer, since otherwise the result follows a fortiori from
(a) and (b). By using the argument of (a), we can construct a quasigroup Q in
which δon(Q) attains any value in Bj,k except values exceeding (j2− j)/2 that are
equivalent to 1 mod (j2 − j)/2. The smallest of these numbers, (j2 − j)/2 + 1, is
given as an exception in the statement of (c), so it remains to show that δon(Q)
can attain the value l(j2 − j)/2 + 1 for 2 ≤ l < k. We choose ◦xi,xi

to give a
contribution of (j2 − j)/4 + 1 for i = 1, 2; a contribution of (j2 − j)/2 − 1 for
i = 3; a contribution of (j2 − j)/2 for 3 ≤ i ≤ l + 1; and a contribution of zero
for l + 1 ≤ i ≤ k. The proof for the (b) variant is similar. �

Our first application of the above pair of lemmas is the following useful corol-
lary.

Corollary 3.7. Suppose k ∈ N.

(a) If s ∈ N, 0 ≤ s ≤ (k2 − k)/2, then there exists a quasigroup Q of order
2k such that δ(Q) = 4s. Moreover, if s ≤ (k2 − 3k + 2)/2, then Q can be
taken to be a loop.
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(b) If s ∈ N, 0 ≤ s ≤ (3k2 − k)/2, then there exists a quasigroup Q of order
3k such that δ(Q) = 3s. Moreover, if s ≤ (3k2− 7k+ 4)/2, then Q can be
taken to be a loop.

Proof. Let Q be a quasigroup Q of the form C2
∼× Ck. Lemma 3.4(a) with j = 2

tells us that δoff (Q) can be any multiple of 4 between 0 and 2(k2 − k), inclusive.
There is no on-diagonal contribution to δon(Q), so we immediately deduce the first
statement of (a). If we wish the twisted product Q to be a loop, Lemma 3.4(b)
with j = 2 says that δoff (Q) can be any multiple of 4 between 0 and 2(k2−3k+2),
inclusive. Together with the equation δon(Q) = 0, we immediately deduce the
second statement of (a).

We next prove (b). First, note that δ(C3) = 0, and if we apply an isotopy of
the form (α, Id, Id) to C3, where α is a transposition of two elements of {1, 2, 3},
then we get a quasigroup Q with δ(Q) = 3. Thus, 3 ∈ Γ, and this already proves
(b) for k = 1. We assume that k > 1 from now on. Lemma 3.4(a) tells us that
δoff (Q) can be any multiple of 3 between 0 and 9(k2 − k)/2, inclusive, with the
exception of 3 itself. It is also clear that δon(Q) can be any number 3i, 0 ≤ i ≤ k:
just pick the on-diagonal operations ◦x,x to be non-commutative for i elements
x ∈ Ck, and commutative for the remaining k− i elements. Putting together the
possible values for δoff (Q) and δon(Q), the first statement of (b) follows readily.

The second statement of (b) follows similarly, except now δoff (Q) is bounded
above by 9(k2−3k+ 2)/2 when we appeal to Lemma 3.4(b), and the on-diagonal
contribution is bounded by 3(k − 1) because we insist that ◦e,e is the group
operation of Ck. �

The above corollary is already enough to prove Theorem 1.1.

Proof of Theorem 1.1. Let r = i/j, where i, j ∈ N are coprime. We may assume
that r < 1 since any commutative group G satisfies Pr(G) = 1. Let m be any
positive integer such that j divides m2, and let

q =

⌈
3

2rm

⌉
, k = 2mq , s = k2(1− r)/2 .

Now, m2r ∈ N and q ∈ N, so s = 2q2(m2 − m2r) ∈ N. We claim that s ≤
(k2 − 3k + 2)/2. Assuming this claim, it follows from Corollary 3.7(a) that there
exists L ∈ L2k such that δ(L) = 4s. By (2.2),

Pr(L) = 1− δ(L)

2k2
= r ,

as required.
As for the claim, because s = k2(1 − r)/2, the claim is equivalent to the

inequality k2r/2 ≥ (3k − 2)/2, which is in turn implied immediately by the
inequality kr ≥ 3. But this last inequality follows from the definition of k, and
so we are done. �
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Remark 3.8. If we only wanted Q to be a quasigroup in the above proof, then
it would have sufficed to take q = d1/(2rm)e there. Since every element com-
mutes with itself, we have Pr(Q) ≥ 1/|Q| for every quasigroup Q, and it is then
straightforward to deduce that the minimal order of a quasigroup Q satisfying
Pr(Q) = r is at least md1/(rm)e, where m is now the minimal positive integer
such that j divides m2. We have thus found to within a factor 2 the minimum
value of |Q| among quasigroups Q satisfying Pr(Q) = r. However, we will later
find the precise minimum value.

The next lemma allows for a significant reduction in the proof of Theorem 1.2.

Lemma 3.9. If n = jk for some j ∈ Γ, j ≥ 4, k ∈ N, then n ∈ Γ.

Proof. Suppose k ≥ 2, and j ∈ Γ for some j ≥ 4. It follows from Lemmas 3.4
and 3.6 that there exist quasigroups Q of the form Cj

∼×Ck with δoff (Q) taking on
any of the values in Aj,k, and δon(Q) taking on any of the values in Bj,k. Taking
the off-diagonal contribution to be any number 0 ≤ a ≤ j2(k2 − k)/2 which
is divisible by j2 (noting that all such numbers lie in Aj,k), and taking the on-
diagonal contribution to be any number in Bj,k, we claim that we already obtain
all values in π(Qn) in the case k > 2. In fact, any target value of at least 3 can be
obtained by adding an off-diagonal contribution that is divisible by j2 to an on-
diagonal contribution lying between 3 and (j2−j)k/2; all such values are possible
by Lemma 3.6(a); we are implicitly using the inequality (j2− j)k/2− 3 ≥ j2− 1.
The only remaining target value is 0, which we obtain as δ(Cj × Ck).

Suppose instead that k = 2. The argument for k > 2 still produces all target
values except j2 + 1 and j2 + 2. To obtain these, it suffices to note that 2j ∈ Aj,k

and {j2 + 1− 2j, j2 + 2− 2j} ⊆ Bj,k; here, we are implicitly using the inequalities
2j ≤ j2 and j2 + 1− 2j ≥ 3, both of which are true for j ≥ 4. �

We are now ready to prove Theorem 1.2. The Latin squares needed in Part 1
of the proof can be found in the support document [3]. These examples give all
values of δ(Qn) for 3 ≤ n ≤ 7 (Tables 1–5), and for n = 9 (Tables 6–8).

Before we give the proof, let us comment on the methods used to find these
examples. Using Observation 2.1, we see that the computation of δ(Qn) reduces
to the computation of δ(T ) for n! Latin squares T obtained by row permutations
from representatives of every isotopy class of order n Latin squares. This renders
trivial the computation of δ(Qn) for n ≤ 3, since in each case there is a unique
reduced Latin square up to relabeling of the symbols. (This unique reduced Latin
square coincides with the multiplication table of Cn once we write the identity
element in the first position.) As for n = 4, it is straightforward to find by hand
Latin squares with deficiencies 0, 4, 5, and 6, and this determines δ(Q4) because
of Theorem 3.2(c).

For larger n, we wrote a computer program to investigate matters. Isotopy
class representatives were in all cases obtained by following links on a webpage
of Brendan McKay [12]. For n ∈ {5, 6, 7}, the computer programme quickly
obtained all possible deficiencies. Analyzing the cases n ∈ {5, 6, 7} by hand also



16 STEPHEN M. BUCKLEY

proved feasible but not easy: we do not reproduce the calculations involved since
the computer-generated examples in the support document were found with less
effort.

We were able to conclude the computer searches when n ∈ {6, 7} before all
isotopy classes of Latin squares had been examined because all possible values of
δ(Q) showed up among the first thirteen of 22 isotopy class representatives for
n = 6, and among the first eight of 564 isotopy class representatives for n = 7.

These efficiencies for n = 6, 7 were of no great significance, but a similar effi-
ciency is essential for n = 9. Since there are more than 1011 isotopy classes of
order 9 Latin squares [13, Theorem 3], and 9! row permutations to be checked for
each, a successful brute force computer search for n = 9 is feasible only if all possi-
ble deficiencies show up after examining just a small fraction of the total number
of isotopy classes. Working from McKay’s first partial list of Isotopy classes with
nontrivial groups, this did indeed occur. However, examples for small positive
deficiencies tended to take longer to appear, and we needed to examine almost
29 500 isotopy classes (and so about 10.6 billion Latin squares) before finding an
example with δ(Q) = 5.

The search difficulties for n = 9 hint at a limitation of such brute force meth-
ods. Since the number of isotopy classes of Latin squares grows quickly, and one
must examine n! row-permuted Latin squares associated with each isotopy class
representative, an examination of all Latin squares by computer is infeasible for
n ≥ 9.

Searching only a sample of the Latin squares of a given order in hopes of finding
all deficiencies can of course be tried. However, heuristically, one expects small
deficiencies to become quite rare compared with large deficiencies as n becomes
large, and so such a partial search is likely to end in failure for orders in excess
of 9 even if billions of row-permuted Latin squares are examined.

Fortunately, 9 is a threshold value of sorts: for n > 9, we have more room to
maneuver, and various constructions will allow us to find all possible deficiency
values. Similar constructions almost work for n = 9. In fact, by such methods,
we can construct all deficiencies except δ(Q) = 5 (which, coincidentally, was also
the most time-consuming deficiency for the computer search).

Proof of Theorem 1.2.
The proof is broken into parts depending on the value of n. In view of Lemma 3.9,
it suffices to prove the following.

(a) {1, 2, 3, 6, 7, 9} ⊆ Γ.
(b) A characterization of δ(Qn) for the exceptional values n ∈ {4, 5}.
(c) 5k ∈ Γ for k > 1.
(d) 4k ∈ Γ for k > 1.
(e) p ∈ Γ if p > 11 is a prime equivalent to 3 mod 4.
(f) p ∈ Γ if p > 17 is a prime equivalent to 1 mod 4.
(g) {11, 13, 17} ⊆ Γ.
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We prove (a) and (b) in Part 1 of the proof, and we prove (c) and (d) in Parts 2
and 3, respectively. We then prove weaker versions of (e) and (f) in Parts 4 and
5, respectively: in both cases, we add the extra assumption that a certain odd
number less than p is in Γ. Finally, we prove (g) in Part 6, and also fill the
remaining gaps in the proofs of (e) and (f). The order of proof is chosen because
later parts generally involve the ideas used in earlier parts plus some additional
ideas.

Part 1 Characterization of δ(Qn) for n ≤ 9, n 6= 8.
Latin squares with all deficiencies that occur are given in [3, Tables 1–8] for

orders n ≤ 7 and n = 9. In view of Lemma 3.2(c), these examples finish the
characterization of δ(Qn) for such n.

Part 2 If n = 5k for some k > 1, then n ∈ Γ.
Suppose n = 5k, k > 1; the restriction k > 1 is needed because of Lemma 3.2(c).

Let Q = C5
∼× Ck. Lemma 3.4 says that δoff (Q) can take on any value in

A5,k := { 5i | 0 ≤ i ≤ 5(k2 − k)/2, i 6= 1 } .
Next, note that (3.1) holds for j = 5, so Lemma 3.6 tells us that δon(Q) can take
on any value in

B5,k := {i | 0 ≤ i ≤ 10k, i 6= 1, 2, 4} .
Thus, δ(Q) can be any number of the form a + b, a ∈ Aj,k, b ∈ Bj,k. If

k > 2, then every number in π(Qn) that is not less than 5 can be obtained by
taking some 0 ≤ a ≤ 25(k2 − k)/2 that is divisible by 25 (noting that all such
numbers lie in A5,k) and 5 ≤ b ≤ 10k; here, we are implicitly using the fact that
10k − 5 ≥ 25− 1.

By taking δoff (Q) = 0 and δon ∈ {0, 3} ⊂ B5,k, we see that {0, 3} ⊂ δ(Qn). It
remains only to get a quasigroup Q with δ(Q) = 4. There are two cases: if k
is even, then we appeal to Corollary 3.7(a), while if k > 1 is odd, we appeal to
Lemma 3.3 to get that 4 ∈ δ(Q7) ⊆ δ(Q5k), as required.

Suppose instead that k = 2. By adding a number in A5,2 = {0, 10, 15, 20, 25}
to a number in B5,2 = {0, 3} ∪ {i | 5 ≤ i ≤ 20}, it is readily verified that we get
all elements of π(Q10) \ {4}. But 4 ∈ δ(Q10) by Corollary 3.7(a), so we are done.

Part 3 If n = 4k for some k > 1, then n ∈ Γ.
Suppose n = 4k, k > 1; the restriction k > 1 is needed because of Lemma 3.2(c).

Most deficiencies can be obtained in a fashion similar to the proof for 5k. Apply-
ing Lemmas 3.4 and 3.6(c), we see that δoff (Q) can take on any value in

A4,k := { 4i | 0 ≤ i ≤ 2(k2 − k), i 6= 1 } ,
while δon(Q) can take on any value in the (adjusted set) B4,k given by

B4,k := {i | 0 ≤ i ≤ 6k, i 6= 1, 2, 3, 7} .
If k ≥ 3, then every number in π(Q4k) other than 3 and 7 can be obtained as δ(Q),
Q ∈ Q4k, by adding an off-diagonal contribution that is divisible by 8 and not
exceeding 8(k2−k) to an on-diagonal contribution lying in B4,k; we are implicitly
using the fact that 6k − 8 ≥ 8− 1. There are two remaining target values when



18 STEPHEN M. BUCKLEY

k ≥ 3, namely 3 and 7. To obtain these, we apply Lemma 3.3 with j = 2k to get
that {3, 7} ⊆ δ(Q6) ⊆ δ(Qn), as required.

Suppose instead that k = 2. By adding a number in A4,2 = {0, 8, 12, 16} to
a number in B4,2 = {0, 4, 5, 6, 8, 9, 10, 11, 12}, it is readily verified that we get
all elements of π(Q8) except 3 and 7. To obtain the first of these, we apply
Lemma 3.3 to get that 3 ∈ δ(Q3) ⊆ δ(Q8). To obtain δ(Q) = 7, we first consider
the following symmetric 5× 5 Latin rectangle R, involving the symbols 1, . . . , 8:

R =

1 2 3 4 5

2 3 1 5 4

3 1 2 6 7

4 5 6 1 8

5 4 7 8 2

All eight symbols appear at least twice, and every symbol except 3 appears an
even number of times. These conditions allow us to apply Theorem 2.2 with r = 5
and n = 8 to extend R to a symmetric order 8 Latin square T . Now, δ(T ) = 0,
but T inherits a couple of useful features from R that allow us to obtain other
deficiencies: as indicated for R above, T has an order 3 Latin subsquare S3 in its
top left corner, and an order 2 Latin subsquare S2 (involving the symbols 4 and
5) immediately below this. If we swap any two rows of S3, and the two rows of
S2, but make no other change to T , then we obtain a new order 8 Latin square
T ′ satisfying δ(T ′) = 7.

Part 4 If m = 2k + 1 ∈ Γ for some k ≥ 4, then n = 4k + 3 ∈ Γ.
By Lemma 3.3, the assumption m ∈ Γ implies that all values in π(Qn) no

larger than (m2 − m)/2 lie in δ(Qn). It remains to construct an order n Latin
square P such that δ(P ) = s for a fixed but arbitrary s satisfying (m2 −m)/2 <
s ≤ (n2 − n)/2. In all cases, we will construct P by prolongating Q, where Q is
of the form C2

∼× Cm, and m = 2k + 1.
Most of the following argument works for k ≥ 2 (and so m ≥ 5). It will be

useful for Part 6 to work in this generality where possible. However, we will need
to assume that k ≥ 4 at the very end of this part of the proof.

To begin with, we define the group G = C2 × Cm. For each x, y ∈ Cm, the
(x, y)-block of G×G is the set of elements (X, Y ) ∈ G×G such that X = (u, x),
Y = (v, y), u, v ∈ C2. Such an (x, y)-block is said to be diagonal or off-diagonal,
depending on whether or not x = y.
G has many transversals, and the varying asymmetry of these transversals is

the key to the construction. The map x 7→ x2 is a bijection of Cm, so the main
diagonal

D = {(gi, gi) | 1 ≤ i ≤ m}
is a transversal of Cm; here, g is a generator of Cm. A second transversal is given
by

D′ = D(σ) = {(gi, gi+1) | 1 ≤ i ≤ m} .
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The two disjoint transversals D and D′ of Cm induce a transversal S of C2 ×Cm

via a map of the form

D ∪D′ → G×G
(x, y) 7→ (X, Y ) ,

where X = (ux,y, x), Y = (vx,y, y), and ux,y, vx,y ∈ C2. Initially, we choose
ux,y = vx,y for all (x, y) ∈ D, thus ensuring that Y = X for (x, y) ∈ D. To ensure
that S is a transversal, we choose ux,y 6= vx,y for all (x, y) ∈ D′.

It is clear that the above procedure gives a transversal of G. Let P0 =
Prol(G,S). Then δ(P0) = 3m because there are six non-commuting pairs corre-
sponding to each off-diagonal element (X, Y ) in the transversal: (X, Y ), (X,ω),
(ω, Y ), and the transposes of these pairs; here, ω is the single element in P0 \G.

Claim 1 If m = 2k+1 ≥ 5 (and so n = 2m+1 ≥ 11), then by taking either P0 or
some related prolongation, we obtain a quasigroup P of order n whose deficiency
equals any desired element of π(Qn) greater than 3m − 2, with the exception of
3m+ 1.

There are various deficiency-changing ways to alter the construction of P0 that
together enable us to justify Claim 1. First, we can make diagonal alterations
by changing the transversal: we choose vx,x different from ux,x for i elements
x ∈ G, 0 ≤ i ≤ m. To ensure that we still obtain a transversal, we need to take
ux,y = vx,y whenever (x, y) ∈ D′, xy = ww, and w is one of the i elements for
which vw,w 6= uw,w. The changes for (x, y) ∈ D′ have no effect on the deficiency,
but those on the diagonal increase the deficiency of the prolongated quasigroup
by 3i, for the same reason as above.

Independently of the diagonal alterations, we can increase the off-diagonal con-
tributions by arguing as in the proof of Lemma 3.4(a) for j = 2. However, there
are some differences that need to be mentioned. For each x 6= y, we “nominate”
either the (x, y)- or the (y, x)-block as the one that may be changed. In the proof
of Lemma 3.4(a), the implicit nomination consisted of all (x, y)-blocks with x < y
(for some linear order <). Here, we need to be more careful: we do not want to
affect the transversals, so the nominations must avoid blocks containing elements
of D′. Thus, we nominate all (x, y)-blocks with x < y, with the exception that
if such a block contains an element of D′, we instead nominate its partner, the
(y, x)-block.

This gives us a set of (m2 −m)/2 nominated blocks. As before, multiplication
in every (x, y)-block consists of defining XY = (γx,y(uv), xy) for all X = (u, x),
Y = (v, y), u, v ∈ C2, where γx,y is a permutation of C2. For all except the
nominated blocks, we take γx,y to be the identity map. For nominated blocks, γx,y
may be either the identity map in C2 (“no change”) or the non-trivial permutation
of C2 (“change”). In either case, the change in the prolongated Latin square
caused by a non-trivial γx,y is restricted to the (x, y)-block, so we only need to
examine this block and its partner block to determine what effect this block
change has on the deficiency.
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When we are computing the increase in the deficiency caused by each changed
nominated block, we need to consider two kinds of blocks: the m nominated
blocks whose partner block contains an element of D′, and the (m2 − 3m)/2
other nominated blocks. For both kinds of blocks, changing the block increases
the before-prolongation deficiency by 4. If the partner block does not contain
an element of D′, then the block change also increases the after-prolongation
deficiency by 4. However, if the partner block does contain an element of D′,
then the after-prolongation deficiency is only increased by 3. This last situation
is illustrated below: the contribution towards δ(P ) of the two blocks that are
given in the diagram increases from 1 on the left (before the block change) to 4
on the right (after the block change).

∗ ∗ a b

∗ ∗ b a

a ω ∗ ∗
b a ∗ ∗

is changed to

∗ ∗ b a

∗ ∗ a b

a ω ∗ ∗
b a ∗ ∗

If we make all the diagonal and off-diagonal alterations as described above,
then there are no commuting pairs left in the quasigroup, so these changes allow
us to go from a deficiency of 3m to one of (n2− n)/2 in steps of 3 and 4, with at
least m ≥ 5 steps of each size. It is clear that this allows us to obtain all elements
of π(Qn) greater than 3m− 1 with the exception of 3m+ 1, 3m+ 2, and 3m+ 5.

Now, 3m + 6, 3m + 3 and 3m can each be obtained as above by changing at
most two nominated blocks. Since there are m ≥ 5 off-diagonal blocks containing
elements of S, we can in each case choose X0 = (u0, x0) such that (X0, Y0) ∈ S
and Y0 = (v, y0), and the (y, x)-block is unchanged. If we now use a variant
prolongation Prol(G,S;X0), then the deficiency is lowered by one; this is because
there are only four non-commuting pairs in P corresponding to (X0, Y0), namely
(X0, ω), (ω, Y0), and the transposes of these pairs. Thus we obtain prolongated
quasigroups with deficiencies 3m+ 5, 3m+ 2, and 3m−1. This finishes the proof
of Claim 1.

Recall that we have already handled deficiencies of at most (m2−m)/2. Thus,
we are done if (m2 −m)/2 ≥ 3m+ 1. This holds when k ≥ 4 (and m ≥ 9).

Part 5 If 2k − 1 ∈ Γ for some k ≥ 6, then n = 4k + 1 ∈ Γ.
The proof of this part is similar to the case n = 4k + 3, so we concentrate on

the differences. Letting m = 2k, the main diagonal of Cm no longer provides a
transversal of Cm: indeed, parity considerations imply that the main diagonal
of any symmetric Latin square T of even order contains no more than half the
elements of any transversal.

However, the set Tm = Dm ∪Em ⊂ Cm×Cm forms a transversal of Cm, where

Dm = {(gi, gi) | 1 ≤ i ≤ k} ,
Em = {(gi, gi+1) | 1 ≤ i ≤ k} ,
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and g is a generator of Cm. We then obtain a transversal S of the group G =
C2×Cm by taking two elements (X, Y ) ∈ G×G corresponding to each (x, y) ∈ Tm:
in both cases, the Cm-components of X and Y are x and y, respectively, but in
one case, the C2-components of X and Y are the same, while in the other, they
are different.

Exactly k elements in S are of the form (X,X), so as in the previous part, we
see that the resulting prolongation P1 = Prol(G,S) satisfies δ(P0) = 9k. We then
obtain the following claim. We omit the proof because it is so similar to that of
Claim 1.

Claim 2 If m = 2k ≥ 4 (and so n = 2m + 1 ≥ 9), then by taking either P1 or
some related prolongation, we obtain a quasigroup P of order n whose deficiency
equals any element of π(Qn) greater than 9k − 2, with the exception of 9k + 1.

The assumption 2k − 1 ∈ Γ implies that all values in π(Qn) that are no larger
than (2k− 1)(k− 1) lie in δ(Qn). This part of the proof is now complete because
(2k − 1)(k − 1) ≥ 9k + 1 for k ≥ 6.

Part 6 If n 6= 4, 5, then n ∈ Γ.
We already know that all odd numbers n ≤ 9, n 6= 5, lie in Γ, and we show

below that {11, 13, 17} ⊂ Γ. Assuming this fact for now, we finish the proof for
all other n, beginning with odd n. Assume that some odd number n 6= 5 is not
in Γ, and that n is a minimal counterexample. Then n ≥ 15. But we also know
that such a number is in Γ if it is a multiple of 5 or 7, so we need to consider
only numbers of the form n = 4k + 3 for k ≥ 4 and n = 4k + 1 for k ≥ 7. In the
former case, we already know that m = 2k + 1 ∈ Γ since 5 < m < n. Similarly,
in the latter case, we already know that m = 2k − 1 ∈ Γ. Thus, Part 4 or Part 5
give a contradiction to the minimality of n.

Suppose instead that n = 2m is even. In view of Part 3, we may assume that
m is of the form 2k + 1 for some k ≥ 0. If k ≥ 3, then m ∈ Γ, and so n ∈ Γ by
Lemma 3.9. The cases k = 0, 1 follow from Part 1, while the case k = 2 follows
from Part 2.

It remains to show that {11, 13, 17} ⊂ Γ. We first consider n = 11. Claim 1 in
Part 4 for m = 5 provides us with all possible deficiencies larger than 13, except
for 16. To obtain all remaining deficiencies, we begin with the following order 7
Latin rectangle:

R =

S5

6 7

7 6

8 9

9 10

10 11

S2
8 9 10 11 1

9 10 11 1 10
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Above, S5 indicates any symmetric order 5 Latin subsquare involving the symbols
1, . . . , 5, and S2 indicates the order 2 Latin subsquare involving the symbols 6 and
7 that makes R symmetric. Note that all eleven symbols occur at least three times
in R, and seven of them occur an odd number of times (namely 1, . . . , 5, 10, 11).
Therefore we can apply Theorem 2.2 with r = 7 and n = 11 to extend R to a
symmetric order 11 Latin square T .

By construction, T contains the Latin subsquare S5 in the top left position, and
the Latin subsquare S2 beneath it. The fact that T is a Latin square then implies
that the part of T lying directly beneath S2 is a column-balanced 4 × 2 Latin
subrectangle R4,2 (containing the symbols 8, 9, 10, 11). Swapping the columns of
either S2 or R4,2 gives a contribution of 4 or 8, respectively, to the deficiency of
an altered order 11 Latin square, and replacing S5 by an arbitrary order 5 Latin
square (using the same symbols) gives a contribution equal to any desired element
of δ(Q5). Each of these alterations can be done independently of each other, and
the resulting Latin square T ′ has deficiency equal to the sum of the contributions
corresponding to the replacements for S5, S2, and R4,2. Consequently, we get as
deficiencies all values in δ(Q5) incremented by 0, 4, 8, or 12. This set of values
yields, in particular, all deficiencies less than 17, so we are done.

The last two numbers to be considered, 13 and 17, are of the form n = 4k + 1
for k = 3, 4. Claim 2 in Part 5 provides us with all possible deficiencies greater
than 9k − 2, except 9k + 1. To obtain the remaining deficiencies, we begin with
the following symmetric order 2k − 1 Latin rectangle R.

R =
S2k−1

2k 2k + 1

2k + 1 2k

...

4k − 4 4k − 3

4k − 3 4k − 4

4k − 2 4k − 3

S12
· · · · · · Sk−12

· · ·
4k 1

1 4k + 1
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Within R, S2k−1 is any symmetric order 2k−1 Latin square involving the symbols
1, . . . , 2k−1, and Si

2 is an order 2 Latin square containing the symbols 2(k+i)−2
and 2(k + i) − 1 for i = 1, . . . , k − 1. Since R is symmetric, the entries in each
Si

2 and the other two missing entries in the last two rows—all omitted to avoid
clutter—can be read off from the last two columns of R.

Note that all 4k+1 symbols occur at least once in R, and 2k+1 of them occur
an odd number of times (namely 1, . . . , 2k − 1, 4k, 4k + 1). Therefore we can
apply Theorem 2.2 with r = 2k + 1 and n = 4k + 1 to extend R to a symmetric
order 4k + 1 Latin square T . The fact that T is a Latin square then implies
that the part of T lying directly beneath S1

2 is a column-balanced 2k × 2 Latin
subrectangle R2k,2 (containing the symbols 2k + 2, . . . , 4k + 1).

Swapping the columns of any given Si
2 gives a contribution of 4 to the deficiency

of an altered order 4k+1 Latin square, and swapping the columns of R2k,2 gives a
contribution of 4k. These alterations can be done independently of each other and
the resulting Latin square T ′ has deficiency equal to the sum of the contributions,
yielding a deficiency equal to any multiple of 4 between 0 and 8k − 4, inclusive.
Independently of these alterations, we can replace S2k−1 by an arbitrary order
2k − 1 Latin square (using the same symbols), giving an additional contribution
equal to any desired element of δ(Q2k−1) ⊇ π(Q2k−1) \ {4} for k ≥ 3. This allows
us to get a deficiency equal to any desired element in δ(Q4k+1) that is no larger
than (2k − 1)(k − 1) + 8k − 4; the assumption k ≥ 3 is needed to ensure that
π(Q2k−1) contains at least three consecutive integers, allowing us to span the gaps
between multiples of 4. Since (2k− 1)(k− 1) + 8k− 4 > 9k− 2 for k ≥ 3, we are
done. �

Finally, we return to our original motivation, which was to investigate com-
muting probabilities. The characterization of δ(Qn) will allow us to characterize
in the following theorem the minimum order, and indeed all possible orders, of a
quasigroup Q satisfying Pr(Q) = r for a given rational number r. However, this
characterization is not as simple as that of δ(Qn), justifying the decision to con-
centrate on deficiencies in our above investigation. We use the p-adic valuation
function νp : Q∗ → Z defined in Section 2.

Theorem 3.10. Let µQ(j, k) be the minimum order of a quasigroup with com-
muting probability j/k, where j, k ∈ N are coprime and j ≤ k. Let m0 be the
smallest integer whose square is divisible by k, i.e. νp(m0) = dνp(k)/2e for all
primes p, let

m =

{
2m0, if k − j is odd and α2(k) is even,

m0, otherwise,

and let M(j, k) = mdk/mje.
(a) If Q is a quasigroup with Pr(Q) = j/k, then |Q| is divisible by m.
(b) µQ(j, k) is divisible by M(j, k).
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(c) In most instances, µQ(j, k) = M(j, k). The only exceptions are as follows:

µQ(5, 8) = 8,

µQ(17, 25) = 10,

µQ(n2 − 2i, n2) = 2n, for i ∈ {1, 2}
µQ(in2 − 1, in2) = 4n, for i ∈ {1, 2}.

Above, n ∈ N is arbitrary, but subject to the conditions that j > 0, and
j, k are coprime.

(d) There exists a quasigroup Q of order N with Pr(Q) = j/k if and only if
N ≥ µQ(j, k), and N is divisible by m.

Proof. In the case j = k = 1, we have m = M(1, 1) = 1. Clearly, µQ(1, 1) = 1,
and there are commutative quasigroups of all orders. From now on, we may
assume that 1 ≤ j < k.

We first prove part (a). For a quasigroup Q with Pr(Q) = j/k, it follows
immediately from (2.2) that δ(Q) = |Q|2(k− j)/2k. Since δ(Q) is an integer, and
j is coprime to k, we see that k must be a divisor of |Q|2, which implies that m0

is a divisor of |Q|. For |Q|2(k− j)/2k to be an integer, we also need to cancel the
factor 2 below the line. This is certainly possible if m2

0/k is even, i.e. if ν2(k) is
odd, and it is also possible if k − j is even. However, if ν2(k) is even and k − j
is odd, then we need |Q| to be divisible by 2m0 in order for |Q|2(k − j)/2k to
be an integer. This finishes the proof of (a), but note conversely that the desired
deficiency value, |Q|2(k − j)/2k, is an integer whenever |Q| is divisible by m.

We next establish the exceptional cases in (c). Suppose first that (j, k) = (5, 8),
and so m = 4 and M(5, 8) = 4. If Q ∈ Q4 and Pr(Q) = 5/8, then we would have
δ(Q) = 3, contradicting Theorem 3.2(c). However, for Q ∈ Q8, Pr(Q) = 5/8
implies δ(Q) = 12. Since 12 ∈ δ(Q8), we are done. The case (j, k) = (17, 25)
similarly leads to m = 5 and M(17, 25) = 5. However, Q ∈ Q5 satisfying
Pr(Q) = 17/25 would again contradict Theorem 3.2(c), but this probability arises
for Q ∈ Q10.

Suppose next that k = n2 > 1, and so m = n. Suppose also that j = n2 − 1,
and so M(j, k) = 2n. But if Pr(Q) = j/k for some quasigroup Q with |Q| = 2n,
then it would follow that δ(Q) = 2, contradicting Theorem 1.2(a). On the other
hand, |Q| = 4n leads to δ(Q) = 8, and that is always possible. The other two
exceptions for k = n2, namely j ∈ {n2 − 2, n2 − 4}, lead to M(j, k) = n. For
|Q| = n, we would need the impossible values δ(Q) ∈ {1, 2}, but for |Q| = 2n,
we are looking for values δ(Q) ∈ {4, 8}; both these values are possible because
n ≥ 3 (since k − j is even, forcing k = n2 to be odd, and n2 − 2 > 0).

The final exception is (j, k) = (2n2−1, 2n2) for some n > 1. Thus, m = 2n and
M(j, k) = 2n. If Pr(Q) = j/k for some quasigroup Q ∈ Q2n, then it would follow
that δ(Q) = 1, contradicting Theorem 1.2. On the other hand, for Q ∈ Q4n,
Pr(Q) = (2n2 − 1)/2n2 implies δ(Q) = 4, which is possible.
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From now on, we assume that (j, k) is not one of the listed exceptions. We
write r = j/k, and M = M(j, k). As a first step towards proving that µQ(j, k) =
M(j, k), we claim that d := M2(k − j)/2k ≥ 3. Now, M = sm0 and m2

0 = tk for
some s, t ∈ N, so d = s2t(k − j)/2.

Suppose first that t = 1, and so k = n2 is a perfect square. Suppose also that
k − j is odd. Thus, j ≤ k − 3, and α2(k) is even. Consequently, M ≥ 2m0, and
d ≥ 4(3)/2. If instead t = 1, k = n2, and k − j is even, then k − j ≥ 6, and so
d ≥ 6/2.

Next, suppose t = 2, and so k = 2n2 for some n ∈ N. In view of the fact that
j and k are coprime, and j < k − 1, we again have k − j ≥ 3, and so d ≥ 2(3)/2,
as required.

Next, suppose that t = 3, and so k = 3n3 for some n ∈ N. If k− j is odd, then
also α2(k) is even, and so M ≥ 2m0 and d ≥ 22(3)/2. Alternatively, if t = 3 and
k− j is even, then d ≥ (3)(2)/2. The case t = 4 cannot arise, and t = 5 is similar
to t = 3. Finally, if t ≥ 6, then d ≥ 6/2. This completes the proof of the claim.

For a quasigroup of a given order N and deficiency δ > 0 to exist, δ must be
an integer, it must be no less than 3, it must be no larger than (N2 −N)/2 and,
finally, there is a “missing deficiency” for N ∈ {4, 5}. The assumption that N is
divisible bym is equivalent to δ being an integer, while the above claim established
that δ ≥ 3. The missing deficiencies for N ∈ {4, 5} are ruled out since they are
covered by two of the exceptional values of (j, k) in (c). Thus, it follows that, as
long as N ≥M and N is divisible by m, the existence of a quasigroup Q of order
N with Pr(Q) = r is equivalent to the inequality N2(1− r)/2 ≤ (N2 −N)/2, or
equivalently, N ≥ 1/r. Since M(j, k) ≥ 1/r by definition, it follows that there
exist quasigroups Q with Pr(Q) = j/k of every order N ≥ µ(j, k), N divisible by
m.

On the other hand, if N < M(j, k) and N is a multiple of m, then N < 1/r
and so no quasigroup Q of order N with Pr(Q) = r can exist. This finishes the
proof of (c) and (d). Part (b) follows immediately in the non-exceptional cases
of (c), and our proof of the exceptional cases shows that it holds in those cases
also. �
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