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In this paper, we shall investigate several questions related to space-filling curves.
We start with a question whose answer has been known (although not widely known,
it would appear) for rather a long time.

Question 1. Do there exist continuous functions f : [0, 1] → R which take on each
of uncountably many values uncountably often?

The answer is “yes”; in fact the first component of any space-filling curve (Peano
curve) is such a function. A recent rather simple example of such a curve can be
found in [8]; for more information on space-filling curves, the reader should consult
[7].

Here we shall give two rather different methods of constructing examples of func-
tions answering our question. Some examples using the first construction have zero
derivative almost everywhere, while the second construction always leads to nowhere-
differentiable examples. We use the notation f−1(y) to denote the set of all pre-images
of y.

We begin with the “digit coding” construction. The example we give maps the
unit interval onto itself and takes on all its values uncountably frequently. First
note that any function continuous on a closed subset S of [0, 1] (with respect to the
subspace topology) can be extended to a function continuous on the whole interval
simply by filling in the omitted open intervals with continuous interpolating functions
(for instance we can “join up the dots” in a linear fashion, and extend the function in
a constant fashion at an omitted end-segment). Thus it suffices to find a continuous
function f : S → [0, 1] such that f−1(y) is uncountable for all y ∈ [0, 1]

Suppose k ≥ 3 is an integer. Any x in [0, 1] can be written in at least one base-k
expansion x = 0.x1x2x3x4x5x6 . . .. Let S be the (closed) set of all x ∈ [0, 1] whose
even-subscripted digits are all less than k − 1. If x ∈ S, then f(x) is defined as the
number whose base-k expansion is obtained by removing the even-subscripted digits
of x, i.e. f(x) = 0.x1x3x5 . . .. Clearly f−1(y) is uncountable (it has the cardinality of
the continuum) for every y ∈ [0, 1]. We are left with showing that f is continuous on
S. This is also easy but, as we shall use similar arguments several times later, let us
give a little more detail this first time. Suppose f(x) 6= f(y) and the first difference
occurs at the m’th digit in their base-k expansion, and so |f(x) − f(y)| ≤ k−m+1.
It follows that the (2m − 1)’st base-k digit of x and y must differ, and the fact that
x, y ∈ S now implies that |x − y| ≥ k−2m. Thus we are done.
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The function f constructed above does not have the bonus property of having
zero derivative almost everywhere, but a small adjustment fixes this: one simply uses
singular continuous functions to interpolate on the omitted segments rather than
linear ones. For instance if (a, b) is one of the omitted intervals, define

f(a + t(b − a)) = f(a) + (f(b) − f(a))h(t), for all 0 < t < 1,

where h : [0, 1] → [0, 1] is any increasing continuous function such that h(0) = 0,
h(1) = 1, h′(x) = 0 for almost all x ∈ (0, 1) (a basic example of such a function, due
to Lebesgue, is described in [4, p.113]).

A slight variant of the above construction leads to a Peano curve. For example
in two dimensions, we first define S ′ to be the (closed) set of all x ∈ [0, 1] all of
whose digits are less than k − 1. If x ∈ S ′, then f1(x) and f2(x) are defined as
the numbers whose base-(k − 1) expansions are given by f1(x) = 0.x1x3x5 . . . and
f2(x) = 0.x2x4x6 . . .. We extend f1 and f2 to all of [0, 1] as before. It follows readily
that F = (f1, f2) is continuous from [0, 1] onto [0, 1] × [0, 1].

Our second construction uses lacunary functions. Examples of this type are easy
to write down, but proving that they have the required properties requires some
effort. A typical example is f(x) =

∑

∞

j=0 4−j cos(100jx). More generally we have
the following result:

Theorem 1. Suppose f(x) =
∑

∞

j=0 aj cos(bjx), where aj , bj > 0, and aj+1 < aj/4,

for all j ≥ 0. Suppose further that there exists an integer j0 such that if j ≥ j0 then

aj+1bj+1 > 6πajbj. Then f is continuous and takes on all values in the interior of its

range uncountably frequently.

Before proving Theorem 1, let us make a few remarks. First of all, f is clearly
uniformly continuous on R since aj+1 < aj/4. For the same reason, f takes on all
values between −2a0/3 and 2a0/3, so Theorem 1 asserts that f takes on uncountably
many values uncountably frequently. The numbers bj+1/bj do not have to be integers,
so f may not be periodic.

Proof of Theorem 1: Let us write sn(x) =
∑n

j=0 aj cos bjx, rj = 4aj+1/3, and
Lj = π/bj. We fix an arbitrary point c in the interior of the range of f and let
n0 be chosen so large that n0 ≥ j0 and that f takes on all values in the interval
[c− 2rn0

, c + 2rn0
]. We also assume n0 is chosen so large that

∑n
j=0 ajbj ≤ 2anbn for

all n ≥ n0; this is possible by the geometric growth assumption on ajbj .

Given n ≥ 0, we call an open interval I a level-n trap if the values of sn − c at the
endpoints of I are of opposite sign and larger than rn in absolute value. Note that a
level-n trap contains roots of f − c and sm − c for all m ≥ n.

There exists a level-n0 trap, call it (u, v), since we can solve the equations f(u) =
c − 2rn0

and f(v) = c + 2rn0
. Writing In0,1 = (u, v), we shall construct a nested

binary tree of level-n traps In,k, n ≥ n0, 1 ≤ k ≤ 2n−n0 , all contained in In0,1. In
fact, each In,k will contain the closure of two disjoint traps In+1,j and the length
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of In,k will tend to 0 as n → ∞. By continuity, any nested sequence of intervals
(In,kn

)∞n=n0
extracted from this tree specifies a unique root of f − c (the single point

which is in the intersection of the In,kn
’s). This root cannot be at the endpoint of any

of the containing traps (since they are compactly nested) and so different sequences
of intervals lead to different roots. Thus f−1(c) is uncountable as required.

Assume inductively that we have already defined I = In,k. We must prove the
existence of two disjoint level-(n + 1) traps contained within it. Suppose x ∈ I is a
root of sn− c. |s′n| is bounded by 2anbn and so, if dn = an+1/(4anbn), then sn differs
from c by less than an+1/2 on the interval [x− dn, x + dn]. Since I is a level-n trap,
it must contain [x − dn, x + dn].

By hypothesis, 3Ln+1 < 2dn. Thus, [x − dn, x + dn] contains subintervals of the
form [mLn, (m + 1)Ln] for two consecutive values of m. Since an+1 cos(bn+1x) takes
on the values ±an+1 at the endpoints of such subintervals, it follows that the interiors
of these subintervals are the required level-(n + 1) traps, and so we are done. ut

The constants 1/4 and 6π are only convenient values for the proof and are far from
sharp. If one examines the proof one sees that the choice of the former constant affects
the latter but, even if we leave 1/4 unchanged, 6π can be replaced by, say, 18π/7 if
we estimate things a little more carefully. In fact, since 18π/7 is a little larger than 8,
we can choose n0 so large that |s′n| is less than sanbn, where s = 1/(1−7/18π) < 8/7.
Thus if dn = tan+1/(sanbn) for any t < 2/3, then sn differs from c by less than tan+1

on the interval [x− dn, x + dn]. Choosing t close enough to 2/3, we have t/s > 7/12,
and so 3Ln+1 < 2dn as before.

Incidentally, it follows from the proof of Theorem 1 that any f considered here ex-
hibits the Weierstrass property of being nowhere differentiable. In fact, the variation
of f on Ij = [x − Lj , x + Lj ] is at least 2aj, ensuring that for some y ∈ Ij ,

|f(y) − f(x)|/|y − x| ≥ ajbj/π → ∞(j → ∞).

This non-differentiability result is much less sharp, however, than that of Hardy
[3], who proved that

∑

an cos bnπx is a continuous nowhere-differentiable function
whenever 0 < a < 1, ab ≥ 1. This suggests the following question:

Question 2. Do all continuous nowhere-differentiable lacunary series take on
uncountably many values uncountably frequently?

I have no answer to this question, but I would be rather surprised if it were true;
perhaps more likely to be true is the conjecture that

∑

an cos bnπx takes on a whole
interval of values uncountably frequently whenever 0 < a < 1, ab > 1 (since here we
have some “room to manoeuvre”).

Before going on to our next question, let us introduce some terminology that we
need here and later. Given 0 < t < 1, we say f : [0, 1] → Rn is t-Hölder continuous
if, for some C > 0,

|f(x) − f(y)| ≤ C|x − y|t, ∀ 0 ≤ x, y ≤ 1. (1)
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In the case t = 1, we instead say that f is Lipschitz (continuous), or C-Lipschitz if
we wish to specify the constant.

Question 3. Do there exist Lipschitz functions f : [0, 1] → R which take on each
of uncountably many values uncountably often?

The answer to Question 3 is again “yes,” although examples like the previous ones
fail because f−1(x) must be finite almost everywhere (see Theorem 2 below). Instead
we first define f on S ⊂ [0, 1], the closed set of numbers whose decimal expansion
can be written using only the digits 0, 2, 7, and 9. For these numbers, the decimal
expansion of f(x) is calculated from that of x by changing all 2’s to 0’s, and all 7’s
to 9’s (and so f−1(x) is uncountable for every x whose decimal expansion involves
only 0’s and 9’s). We define f at all other values by linear interpolation. We leave to
the reader the task of verifying that the resulting function f satisfies the Lipschitz
condition |f(y) − f(x)|/|y − x| ≤ 2 on S (and hence on [0, 1]).

For any exponent t < 1, one can construct a t-Hölder continuous f : [0, 1] → R

which takes on all values in an interval uncountably frequently. Our first digit-coding
example f is an example for t = 1/2. This construction is easily modified to handle
any t < 1. First let S to be the set of x ∈ [0, 1] for which the base-k expansion has
no digit equal to k − 1 in any position whose subscript is divisible by a fixed integer
m > 1. We define f on S by deleting all digits whose subscript is divisible by m, and
extend f using linear interpolation. Then f is t-Hölder continuous for t = (m−1)/m,
and f−1(x) is uncountable for all x ∈ [0, 1].

The following theorem shows how different things are for Lipschitz functions.
This result is a special case1 of a more general result concerning Lipschitz maps
between metric spaces (see [2, Corollary 2.10.11]), but we give a short proof here for
completeness.

Proposition 2. If f : [0, 1] → R is C-Lipschitz and N : R → [0,∞] is the cardinality

of f−1(x), then
∫

R
N(x) dx ≤ C. Consequently, N(x) is finite almost everywhere.

Proof: For all j > 0, let ∆j be the collection of dyadic intervals of the form [(k −
1)2−j, k2−j), for 1 ≤ k < 2j, and [1−2−j , 1]. Note that (∆j)∞j=1 is a nested sequence
of partitions of [0, 1]. Let Nj(x) be the number of intervals f(I), I ∈ ∆j , which
contain x. Using the properties of ∆j , we see that for each x ∈ R, Nj(x) is an
increasing function of j which tends to N(x) as j → ∞. Furthermore, it is clear that

∫ 1

0

Nj(x) dx =
∑

I∈∆j

|f(I)| ≤
∑

I∈∆j

C|I| = C,

where |I| and |f(I)| denote the lengths of the intervals I and f(I). An appeal to
Lebesgue’s Monotone Convergence Theorem finishes the proof. ut

1 I would like to thank P. Haj lasz for pointing this out to me.
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Question 4. Does there exist a function f from [0, 1] onto U ≡ [0, 1]× [0, 1] which
is t-Hölder continuous for some t ≥ 1/2?

Question 4, like Question 3, is inspired by a shortcoming in the earlier examples:
our base-k Peano curve F is t-Hölder continuous for t = (log(k − 1))/(2 log k), thus
providing examples for all t < 1/2. The following theorem answers Question 4.

Theorem 3. There exist Peano curves F : [0, 1] → U which are t-Hölder continuous

for t = 1/2, but no such curve is t-Hölder continuous for t > 1/2.

Proof: We first examine the case t > 1/2. The Minkowski dimension of a compact
subset E of Rn is defined by

M-dim E = sup{s ≥ 0 : lim sup
r→0

Hs(E, r) = ∞},

where Hs(E, r) is the α-dimensional Minkowski precontent, defined as krs, where k
is the minimum number of balls of radius r required to cover E. These concepts, and
the related concept of Hausdorff dimension, are discussed at greater length in [5] and
[1]. We shall need only the easily proven fact that any compact E ⊂ Rn of positive
measure has Minkowski dimension n. Also noteworthy, although not needed by us,
is the obvious fact that the Minkowski dimension of a set is greater than or equal to
its Hausdorff dimension.

Suppose that F : [0, 1] → U satisfies (1) for some t > 1/2. We claim that the
Minkowski dimension of F ([0, 1]) is at most 1/t (and hence the range of F cannot be
all of U). To see this note that the image of any interval [i/k, (i + 1)/k] is contained
in a ball of radius C/kt about f(i/k). Thus H1/t(F ([0, 1]), C/kt) ≤ C1/t, and our
claim follows easily.

We next construct the required 1/2-Hölder continuous Peano curve. The base-3
example I shall give is the same as Peano’s original example of a space-filling curve2

[6]. The basic idea is simple: we can “almost” get the solution by “chopping” x
into its base-k digits, allocating them one at a time to be the next base-k digit
of either f1(x) or f2(x). This certainly gives a space-filling function but it is not
1/2-Hölder continuous (or even continuous) because of the following phenomenon: if
y = 0.y1y2 . . . yn . . . in base-k, where ym 6= 0 and yn = 0 for all n > m, and if m is odd
(even) then the left- and right-hand limits for f2 (respectively f1) at y are different.
The way out of this problem is fairly clear: we allocate digits one at a time to f1(x)
and f2(x) but introduce a parity effect to compensate for these discontinuities. We
describe this process for base 3 where it is most easily done.

To avoid problems caused by non-unique expansions, we define functions A :
[0, 1] → S and B : S → [0, 1], where S is the set of infinite sequences whose terms are
restricted to the set {0, 1, 2}. A maps numbers to (one of) their base-3 expansions,

2 I would like to thank the editor for sending me a copy of this paper.
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and B maps (x1, x2, x3, . . .) to the number with base-3 expansion 0.x1x2x3 · · ·. We
shall write values of these functions in the form Ay and Bx. Whenever x ∈ S, we
denote its i’th term by xi.

Let G = (g1, g2) : S → S × S be defined by G(x) = (u, v) where

uk =

{

x2k−1, if
∑k−1

i=1 x2i is even

2 − x2k−1, if
∑k−1

i=1 x2i is odd,

vk =

{

x2k, if
∑k

i=1 x2i−1 is even

2 − x2k, if
∑k

i=1 x2i−1 is odd.

We now define F (y) = (Bg1(Ay), Bg2(Ay)) whenever y ∈ [0, 1].

Clearly F has range U . We are left with showing that F is 1/2-Hölder continuous.
A simple case-by-case argument reveals that F is independent of the choice of A (for
example, G(0, 2, 2, 2, . . .) = G(1, 0, 0, 0, . . .)). Whenever x ∈ S, G(x) = (u, v), let us
call u1, v1, u2, v2, u3, v3, . . . the standard order of the terms of G(x).

Suppose x, y ∈ S and Bx < By. Let us assume that the first term of G(x) which
differs from the corresponding digit of G(y), using the standard order, is the m’th
term of the g2(y) (if the first difference is in g1(y), a similar argument applies). Then
|F (Bx) − F (By)| ≤ 3−m+1. If |Bx − By| ≥ 3−2m, we are done, so we may assume
|Bx − By| < 3−2m. But then, if there is some 0 < j < 2m such that xi = yi if i < j
and xj 6= yj , we must have xj + 1 = yj and, whenever j < i ≤ 2m, xi = 2 and
yi = 0. This forces the m’th digit of the second coordinates of F (Bx) and F (By) to
be equal, contrary to assumption. The only remaining possibility is that xi = yi if
i < 2m and y2m = x2m + 1. In this case, Bx ≤ Bz ≤ By, where zi = yi for i ≤ 2m
and zi = 0 if i > 2m. If z 6= y and the j’th term is the first term where they differ,
then it is clear that

By − Bx ≥ By − Bz ≥ 3−j , |F (y) − F (z)| ≤ 31−j/2. (2)

Next let z′ be the sequence defined by zi = xi for i ≤ 2m and zi = 2 if i > 2m, so
that Bz = Bz′. If z′ 6= x and the k’th term is the first term where they differ, then
it is again clear that

By − Bx ≥ Bz − Bx ≥ 3−k, |F (z) − F (x)| ≤ 31−k/2. (3)

Putting (2) and (3) together, we get the desired Hölder continuity. ut

Our previous argument actually implies that there are no Peano curves f : [0, 1] →
[0, 1]n, n ≥ 2, which are t-Hölder continuous for t > 1/n. The construction for t = 1/2
also generalises to give an n-dimensional Peano curve which is 1/n-Hölder continuous
in the higher dimensional setting: again using a base-3 expansion, we “deal out” the
digits one at a time to each of the n coordinates, replacing each “0” by “2” and vice
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versa whenever the sum of the digits previously dealt to the other coordinates is odd.
We leave the verification of 1/n-Hölder continuity to the reader.

Question 5. Does there exist a map G from the unit square U = [0, 1]× [0, 1] to U
such that the image of any non-trivial line segment in U has non-empty interior?

We give a couple of methods for constructing such a map G. The map A(x, y) =
F (x), where F = (f, g) is the Peano curve defined earlier, has this property on all
non-vertical lines. Defining B : U → U by B(x, y) = ((x + y2)/2, y), G = A ◦ B has
the desired property (since if L ⊂ U is a non-trivial line segment, the x-projection of
B(L) is also a non-trivial line segment).

One might feel that the previous method is not completely satisfactory since we
have simply “hidden” the straight lines. Our second method, has the advantage that
it produces a function G for which the image of G◦γ has non-empty interior whenever
γ is a non-trivial C1 path in U . First let Fk = (fk, gk) to be our old base-k Peano
curve F . Fk is t-Hölder continuous for t = (log(k − 1))/(2 log k) but not for any
larger t; in fact, it is easily seen that for any n, the image of any interval of length
1/k2n under Fk is contained in a square of length (k − 1)−n+1 and contains a square
of length (k − 1)−n−1.

We claim that G(x, y) = Fi(x)+Fj(y) is a function of the type we require for any
3 ≤ i < j. We shall content ourselves here with sketching the proof. Clearly images
of vertical line segments have non-empty interior. If γ is not a vertical line, then
we need only look in the vicinity of a single point (x0, y0) on γ where the tangent
line is non-vertical. In this case, one expects everything to work out since on any
sufficiently small neighbourhood of γ (dependent on the slope of the tangent line), the
variation in Fi is much larger than the variation in Fj . To make this idea rigorous,
assume G(x0, y0) = (u0, v0). We solve the equation G(x, y) = (u, v) for all (u, v)
sufficiently near (u0, v0) by an iterative method. Having found the approximate
solution (xk, yk), we find (xk+1, yk+1) ∈ I, a nearby point on the curve for which
Fi(xk+1) + Fj(yk) = (u, v). With this hint, we leave the details to the reader.

Acknowledgements. A couple of variations of Question 1 were posed to me by Fin-
barr Holland. Piotr Haj lasz asked me Questions 3 and 5 as well as suggesting several
useful references. I would like to thank them both for useful related conversations.
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