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Abstract

We study sequences of positive numbers satisfying a reverse Minkowski condi-
tion. In particular, we classify those monotonic decreasing sequences which can be
rearranged to satisfy such a condition.

1. Introduction

In contrast to infinite sequences, the lp norms of a finite sequence are all compara-
ble. For infinite sequences, one can only say that the lp norm is a decreasing function
of p > 0. In fact, the assumption that two distinct lp norms of arbitrary contiguous
blocks of terms of a fixed sequence are uniformly comparable seems to be a rather
strong constraint on the sequence. Non-negative sequences whose non-increasing re-
arrangements decrease at a geometric or faster rate are easily seen to be of this type
(see Lemma 2.1), but there are others, as we shall see, whose non-increasing rear-
rangements decrease much more slowly; in fact, it follows from Corollary 2.7 that
∑∞

n=1 n−q can be rearranged to form such a sequence whenever q > 1/p. Producing
such examples is a non-trivial exercise since, intuitively, they have to mix the ‘large’
and ‘small’ terms in a rather intricate way. In this paper, we shall give simple cri-
teria (see Theorem 2.6) by which one can decide whether or not a given decreasing
sequence can be rearranged to produce such a sequence, together with an algorithm
for constructing such a rearrangement when it is possible.

From now on, sequences are always assumed to be non-negative with at least
one non-zero term. We denote sequences by capital letters and their terms by the
corresponding lower-case letters (for example, A = (ak)). Binary operations and
relations applied to sequences are to be interpreted in a pointwise sense. For instance,
A ≥ 0 means ak ≥ 0 for all k, and Ap is the sequence (ap

k). If R is a rearrangement of
the positive integers, AR denotes the induced rearrangement of A whose kth term is
ark

. If 1 ≤ n < ∞, n ≤ m ≤ ∞, we call the (possibly finite) sequence (ak)m
k=n a block
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2 SEQUENCES OF REVERSE MINKOWSKI TYPE

of A, and we define ‖A‖lp(n,m) = (
∑m

k=n |ak|
p)

1/p
if 0 < p < ∞ and ‖A‖l∞(n,m) =

maxn≤k≤m |ak|. As usual, we write ‖A‖lp = ‖A‖lp(1,∞). Given a bounded sequence
A, we denote by A∗ = (a∗

n) the non-increasing rearrangement of A.

Suppose 1 < r ≤ ∞. It follows from a rather general version of Minkowski’s
inequality that ‖B‖lr(n,m) ≤ ‖B‖l1(n,m) (this elementary fact can also be shown in
other ways, but the reason given here justifies coining the term “reverse Minkowski
condition” below). If 0 < p < q ≤ ∞, it follows that ‖A‖lq(n,m) ≤ ‖A‖lp(n,m), simply
by letting B = Ap. We define RMp,q to be the class of bounded sequences A that,
for some constant C > 0, satisfy the reverse Minkowski condition

‖A‖lp(n,m) ≤ C‖A‖lq(n,m), for all 1 ≤ n ≤ m < ∞. (1.1)

We define RRMp,q to be the class of rearrangements of RMp,q sequences. The reason
we restrict our study to bounded sequences is that unbounded sequences always have
rearrangements satisfying (1.1) for any fixed 0 < p < q ≤ ∞, as the reader can
readily verify.

The reverse Minkowski condition bears a certain resemblance to the well-known
reverse Hölder condition (initially investigated in [3] and [1] ; see [2] for a more
recent account). Roughly speaking, the reverse Hölder condition, which is most often
defined for a weight w on Euclidean space, says that the fraction of a cube Q where
a weight is much bigger than its average on Q must be quite small. By contrast,
the reverse Minkowski condition roughly says that the number of terms which are
comparable to the largest term in a block must be small in number. Since this is a
lower bound on variability rather than an upper bound, one would expect objects
satisfying such a condition to be harder to describe. Thus, although one could define
an analogous condition on Euclidean space, we shall only attempt in this paper to
investigate it in the simpler setting of sequences.

(1.1) implies the limiting inequalities ‖A‖lp(n,∞) ≤ C‖A‖lq(n,∞), but the converse

is false. For example, if we modify the sequence (2−k) by inserting k new terms, all
equal to 2−2k, between each pair of old terms 2−k and 2−(k+1), the resulting sequence
is not in RMp,q for any p > 0, but it satisfies all reverse Minkowski inequalities over
infinite blocks.

Suppose 0 < p < q ≤ ∞. If A ∈ RMp,q, then

‖A‖lp(n,m) ≤ C‖A‖lq(n,m) ≤ C‖A‖
1−p/q
l∞(n,m)‖A‖

p/q
lp(n,m)

and so ‖A‖lp(n,m) ≤ Cq/(q−p)‖A‖l∞(n,m). Thus RMp,q = RMp,∞, so we shall drop
the q subscript in RMp,q and RRMp,q from now on. It follows that RMp ⊂ lp. Also,
it is clear that RMq ⊆ RMp if 0 < q < p, and that A ∈ RMp if and only if Ap ∈ RM1.
Thus, to understand RMp and RRMp, it suffices to study RM1 and RRM1.
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2. Main results

If A ∈ RM1, we denote by CA the smallest constant C for which ‖A‖l1(n,m) ≤
C‖A‖l∞(n,m) (for all 0 < n < m). Clearly CA ≥ 1, with equality if and only if A has
only one non-zero term. We now find a simple necessary and sufficient condition for
a monotonic decreasing sequence to be in RMp.

Lemma 2.1. Suppose A = A∗ and 0 < p < ∞. Then A ∈ RMp if and only if there

exist constants C > 0 and 0 < t < 1 such that

am ≤ Ctm−nan for all 0 < n < m. (2.2)

Furthermore, if A ∈ RMp, then all rearrangements of A are in RMq for all q > 0.

Proof. Without loss of generality we may assume p = 1. If A = A∗ ∈ RM1, then
sn ≡

∑∞

k=n ak ≤ CAan for all n. If we write t = 1 − C−1
A , then sn+1 ≤ tsn, and so

am ≤ sm ≤ tm−nsn ≤ CAtm−nan.

The converse is even easier, as we do not need monotonicity. If am ≤ Ctm−nan then,
for any 0 < q < ∞,

m
∑

k=n

aq
k ≤ Cqaq

n

m−n
∑

k=0

tkq ≤
Cqaq

n

1 − tq
.

For the second statement, it suffices to show that if A ∈ RM1 is monotonic
decreasing, and B = AR is a rearrangement of A, then B ∈ RM1 also. Among the
set of integers i for which ‖B‖l∞(n,m) = bi = ari

, let j be the one that minimises ri.
Then

m
∑

k=n

bk ≤

∞
∑

k=rj

ak ≤ CAarj
= CAbj . �

The situation for non-monotonic sequences is quite different. The monotonic
rearrangement of a general RMp sequence does not have to satisfy (2.2), although it
does satisfy a weaker size condition (see Proposition 2.4). Also, an RMp sequence
is not necessarily in RMq for any fixed q < p (see Corollary 2.9). Finally, the
invariance of the RMp condition under rearrangements completely breaks down for
non-monotonic sequences, as the following example shows.

Example 2.3. Let B = 2−A = (2−ak), where

ak =

{

2i, if 2i − i < k ≤ 2i, i ≥ 3

k, otherwise.
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Let us call ak a deviant term if ak 6= k. Then B is a monotonically decreasing
sequence, but B /∈ RMp for any p > 0, because of the long blocks of equal terms.

However, there exists a rearrangement A′ of A such that B′ = 2−A′

∈ RMp for all
p > 0. Specifically, we claim that A′ can be chosen to be any rearrangement of A
in which each deviant term is surrounded by two smaller non-deviant terms. For
example, doing this with ‘minimal rearranging’ yields

A′ = (1, 2, 3, 8, 4, 8, 5, 8, 9, 16, 10, 16, 11, 16, 12, 16, 17, . . . , 23, 32, 24, 32, . . .).

Note that in A′, the first instance of 2k occurs after the term 2k − 2k + 1, for all
k > 2.

To prove the claim, note first that B ≤ S, where S = (2−k). Also bk = sk unless
− log2 bk is a deviant term. By Lemma 2.1, SR ∈ RMp for any rearrangement R of
the positive integers. Choose R so that BR = B′ is a rearrangement of the above type.
Now, ‖BR‖lp(n,m) ≤ ‖SR‖lp(n,m) ≤ C‖SR‖l∞(n,m), and ‖SR‖l∞(n,m) = ‖BR‖l∞(n,m)

except if n = m and amr
is a deviant term. But this exceptional case is trivial and

so we are done.

Proposition 2.4. Suppose A ∈ RM1. If t = 1 − C−1
A , and dj =

2j+1−1
∑

i=2j

a∗
i , then

dm ≤ CAtm−ndn.

Proof. Let sj ≡
∑∞

i=j di. We claim that sj ≤ CAdj , for all j ≥ 0. Clearly,

s0 = ‖A‖l1 ≤ CA‖A‖l∞ = CAd0. Suppose j > 0. Then sj is a sum of terms over
the 2j blocks of A (some of which may be empty) obtained by removing the 2j − 1
largest terms from the sequence A. Let d′

j be the sum of the largest terms in each of
these blocks. Adding the corresponding sides of the reverse Minkowski inequalities
over each of these blocks, we get sj ≤ CAd′

j ≤ CAdj , as required.

It now follows that sj+1 = sj − dj ≤ (1 − C−1
A )sj = tsj for all j > 0 and so, for

all 0 < n < m,

dm ≤ sm ≤ tsm−1 ≤ · · · ≤ tm−nsn ≤ CAtm−ndn. �

Corollary 2.5. If A ∈ RMp for some p > 0, then A ∈ RMq for some q < p.

Proof. Without loss of generality, we may assume p = 1. Suppose n, m are fixed
but arbitrary. Let An,m be the sequence whose kth term is ak if n ≤ k ≤ m,
and 0 otherwise. Also let (bk) be the non-increasing rearrangement of An,m, and

let dj =
∑2j+1−1

k=2j bk. Clearly CAn,m
≤ CA and so Proposition 2.4 tells us that

dj ≤ CAtjd0, where t = 1 − C−1
A .
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By an easy calculus argument, we see that if x, y ≥ 0, q < 1, then xq + yq ≤

21−q(x + y)q. Iterating this inequality, we get that
∑2j+1−1

k=2j bq
j ≤ 2j(1−q)dq

j . Let us

choose q < 1, but so close to 1 that r ≡ 21−qtq < 1. Then

‖A‖q
lq(n,m) =

∞
∑

k=0

bq
k ≤

∞
∑

j=0

2j(1−q)dq
j ≤ Cq

Adq
0

∞
∑

j=0

rj =
Cq

Adq
0

1 − r
=

Cq
A‖A‖q

l∞(n,m)

1 − r
,

as required. �

The converse of Proposition 2.4 is false. The dyadic sums of a non-negative
bounded sequence or of its monotonic decreasing rearrangement cannot alone deter-
mine whether or not the sequence is in RM1 (for example, the monotonic sequence
B of Example 2.3 is not in RMp for any p > 0, while its minimal rearrangement B′

has the same dyadic sums and is in RMp for all p > 0). However, the dyadic sums of
a monotonic sequence are sufficient to decide if the sequence can be rearranged into
a RM1 sequence, as the following theorem reveals.

Theorem 2.6. Suppose A = A∗ and let dj ≡
∑2j+1−1

k=2j ak. Then the following are

equivalent.

(i) A ∈ RRM1.

(ii) There exists C < ∞ and 0 < t < 1 such that dm ≤ Ctm−ndn, for all m >
n > 0.

(iii) There exists C < ∞ and s > 1 such that am ≤ C(n/m)san, for all m > n > 0.

Note that conditions (ii) and (iii) limit how many similar-sized terms can be
in initial segments of A. Consider, for instance, monotonic sequences A such that
ak = 2−bj for all bj < k ≤ bj+1, where B is some increasing sequence. If bj = cj

for any c > 1, then Ap satisfies (iii) for all p > 0, while if bj = j!, then Ap violates
(iii) for all p > 0. Note also that (n−s) ∈ RRM1 whenever s > 1. As an immediate
corollary, we have the following characterisation of RRMp sequences.

Corollary 2.7. Suppose 0 < p < ∞ and that A is a bounded sequence. Then

A ∈ RRMp if and only if there exist C < ∞, s > 1/p such that a∗
m ≤ C(n/m)sa∗

n

for all m > n > 0, where A∗ is the decreasing rearrangement of A.

Proof of Theorem 2.6. (i) implies (ii) by Proposition 2.4. Let us now assume
(ii) and prove (iii). Define integers i and j by the inequalities 2i−1 < n ≤ 2i and
2j − 1 ≤ m < 2j+1 − 1. Letting s = 1 − log2 t > 1, (ii) and monotonicity imply that

am ≤ a2j−1 ≤ dj−1/2j−1 ≤ Ctj−i−1di/2j−1 ≤ C

(

t

2

)j−i−1

a2i ≤ C ′(n/m)san.
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Finally, we assume (iii) and prove (i). We do so first for the case s > 2, by
considering an ordering of the integers induced by a certain infinite tree structure.
Levels 0 through 4 of this tree T are shown in Figure 1. As indicated there, T has
2j nodes at level j, labelled from right to left by the integers 2j through 2j+1 − 1.
Node 1, the single node at level 0, is connected to two nodes at level 1 which we
refer to as its “far-right” (node 2) and “far-left” (node 3) offspring. If k > 0, node
k has either four offspring (if 2j ≤ k < 2j + 2j−1 for some j > 0) or no offspring (if
2j + 2j−1 ≤ k < 2j+1 for some j > 0). In the former case, its offspring have four
consecutive integers as labels. By increasing order of labels, we refer to these nodes
as the far-right, near-right, near-left, and far-left offspring of node k, for obvious
diagrammatical reasons.

For any k > 0, we define SL(k), the set of ‘far-left descendents’ of k, to be empty
if k does not have a far-left daughter, and otherwise to consist of k’s far-left daughter
and all descendents of that daughter. Similarly, we define Sl(k), Sr(k), and SR(k)
to be the set of near-left, near-right, and far-right descendents of k. We also define
S(k) = SL(k) ∪ Sl(k) ∪ Sr(k) ∪ SR(k) ∪ {k}.

Any ordering ≺ on N can be extended to a partial ordering (which we also denote
by ≺) on subsets of N simply by writing U≺V if U and V are two sets of positive
integers such that u≺v for every u ∈ U , v ∈ V . Using this notation, we now define
≺ to be the unique ordering on N whose extension satisfies

SL(k)≺Sl(k)≺{k}≺Sr(k)≺SR(k),

for all k ∈ N. If we now write the positive integers in ≺-ascending order, we get the
following rearrangement of N:

R = (3, 1, 7, 6, 2, 15, 14, 5, 13, 12, 31, 30, 11, 29, 28, 27, 26, 10, 25, 24, 4, 63, . . .).

To see that ≺ induces a rearrangement of N, we need only show that SL(k) and
Sl(k) are always finite sets. By construction, the number of nodes at level j with
descendents at level i > j halves each time i is incremented by one, until finally there
is only one such node (namely k = 2j) for all i ≥ 2j. The finiteness of SL(k) and
Sl(k) follows immediately since these sets cannot contain powers of 2.

We now show that B = AR ∈ RM1. Let Lj = {k ∈ N | 2j ≤ k < 2j+1}, the set of
all nodes at level j. Suppose k ∈ Lj0 and j > j0. Clearly S(k)∩Lj has at most 4j−j0

nodes. Also, it is inductively clear that if k 6= m ∈ S(k), then m ≥ 2k. It follows
that if m ∈ S(k) ∩ Lj , then m ≥ 2j−j0k. Since s > 2, (iii) implies that

∑

i∈S(k)

ai =
∞
∑

j=j0

∑

i∈S(k)∩Lj

ai ≤ Cak

∞
∑

j=j0

4j−j0/2(j−j0)s ≤ C ′ak. (2.8)

We now fix a non-empty block F = (ri)
m
i=n of R. Suppose j = j0 is the smallest

integer for which F ∩ Lj is non-empty. The set F0 = F ∩ Lj0 is a block of at most
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four consecutive integers. We would like to be able to say that if i ∈ F then i ∈ S(k)
for some k ∈ F0, but this is not necessarily true. If k1 ≡ mink∈F0

k > 2j0 , then i
may lie in SR(k1 − 1) ∪ Sr(k1 − 1) and, if k2 = maxk∈F0

k < 2j0+1 − 1, i may be
in SL(k2 + 1) ∪ Sl(k2 + 1). We therefore define F ′

0 to be the smallest superset of F0

which also contains any right offspring of k1 − 1 and any left offspring of k2 + 1 that
belong to F (e.g. if F0 = {9}, then F ′

0 ⊆ {9, 18, 19, 24, 25}). Now, any i ∈ F lies in
S(k), for some k ∈ F ′

0. Using (2.8), we deduce that
∑m

i=n bi ≤ C ′
∑

i∈F ′

0

ai. Clearly

F ′
0 has at most eight elements (in fact, a little further reflection reveals that it has

at most six), so the required reverse Minkowski inequality follows.

If 1 < s ≤ 2, the argument breaks down because the geometric sum in (2.8) is
no longer convergent. If we replace our previous tree with a standard binary tree,
the analogous version of (2.8) is valid for any s > 1, since we can replace the 4j−j0

factor in the geometric sum by 2j−j0 . Unfortunately, each node in a binary tree has
infinitely many descendents on both the left and the right, so such a tree does not
induce a (sequential) rearrangement of N. We instead use a hybrid tree in which,
at each level, either every node has exactly two offspring (‘far left’ and ‘far right’)
or, as with our original example, the leftmost half of the nodes are childless and the
rightmost half of the nodes have four offspring each. We refer to the former type of
level as a binary level and the latter type as a non-binary level. Note that, with one
node at level 0, such trees have 2j nodes at level j for all j ≥ 0, and they are uniquely
determined once we specify which levels are binary.

For fixed m > 1, we denote by Tm the tree which has one non-binary level below
each m−1 binary levels (so the jth level is non-binary if and only if j+1 is divisible by
m). As before, we label the nodes in the jth level with consecutive integers between
2j and 2j+1 − 1 as we traverse it from right to left, and hence get an order on the
integers. The non-binary levels ensure that the sets of left descendents, SL(k) and
Sl(k), are finite for all k. It follows that the Tm-induced order of N actually gives
a rearrangement Rm of N. It is not hard to see that if k ∈ Lj0 then S(k) ∩ Lj

has less than 2(j−j0)(1+1/m)+1 terms and that m ≥ 2j−j0k if m ∈ S(k) ∩ Lj. Thus
∑

i∈S(k) bi ≤ Cbk, as long as s > 1 + 1/m. By choosing large enough m, we see that

(iii) implies (i) for any s > 1 (alternatively, a single tree will work for all s, if the
number of binary levels between successive non-binary levels tends to infinity as one
progresses down the tree). �

The following corollary (which should be contrasted with 2.5) is now immediate,
since B = (n−1/q) ∈ RRMp \ RRMq, for any 0 < q < p.

Corollary 2.9. Given 0 < q < p, there exists a bounded sequence A in RMp \RMq.

As Lemma 2.1 and Example 2.3 indicate, there are many ways one can rearrange a
sequence which decreases quickly most of the time, in order to produce a sequence in
RMp for all p > 0. We shall now show that there is much less freedom when dealing
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with sequences whose monotonic rearrangements decrease slowly—in fact any such
RM1 sequence is naturally associated with one of a rather general class of trees that
include all the trees T , Tm used in the proof of Theorem 2.6.

Let us begin with a couple of definitions. By a rearrangement tree we shall mean
a tree with the following properties.

(a) It has 2j nodes at level j, j ≥ 0, each of which have a unique label which is
an element of Lj (we do not insist on any specific numeric ordering of the
labels). We identify the node with its label.

(b) Each node has a unique mother-node at some earlier level (not necessarily
one level removed) and the offspring of a node k are arranged from left to
right (a certain number on the left of k, the remainder on the right).

(c) Each node has a finite number of left descendants.

As the name suggests, any rearrangement tree induces a rearrangement of the positive
integers by iterating the basic rule that the offspring of a node k are ordered from
left to right, and that k falls between its left and right offspring. This rule allows one
to find the relative order of the integers less than 2j+1 by considering only levels 0
through j. As one considers more levels, the larger integers are inserted in this list;
we get a rearrangement rather than a more general reordering because (c) guarantees
that any initial segment of the list receives only a finite number of later insertions.
For example the tree in Figure 2 induces the following relative order on the first 31
positive integers:

2≺ 1≺ 6≺ 11≺ 20≺ 5≺ 30≺ 3≺ 8≺ 21≺ 19≺ 12≺ 17≺ 7≺ 16≺ 28≺

≺ 9≺ 22≺ 29≺ 13≺ 23≺ 27≺ 15≺ 18≺ 4≺ 24≺ 10≺ 25≺ 31≺ 14≺ 26

We say that a rearrangement tree is an M -tree if each node has at most M offspring at
any one subsequent level (although the total number of its offspring may be infinite).

We claim that if A is any decreasing sequence satisfying condition (iii) of Theorem
2.6 for sufficiently large s = s(M), then AR ∈ RRM1, where R is the rearrangement
of the integers induced by an M -tree. First note that the within-level right-to-left
labelling of the nodes at level j is employed in Theorem 2.6 only to minimise C ′

in (2.8); the more general labelling schemes we are now allowing simply require
C ′ to be multiplied by a factor 2s (since m ∈ S(k) ∩ Lj now only implies that
m ≥ 2j−j0−1k). In fact an examination of the proof of Theorem 2.6 reveals that the
only characteristics needed of our tree to make the argument valid (for sufficiently
large m) are that there exist numbers K0, K1, K2 > 0 such that the number of

descendents of a level-j0 node at level j is at most K0K
j−j0
1 , and that in the induced

rearrangement of N, there are no more than K2 nodes from level j in any block
that has no nodes at level k for all k < j; this is clearly the case for M -trees (with
K0 = K1 = M, K2 = 2M).

Conversely suppose that A ∈ RM1 and that there exists c > 0, s < ∞, such
that for all m > n > 0, a∗

m ≥ c(n/m)sa∗
n. In particular, pairs of terms from a
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single dyadic block of A∗ have bounded quotients. Let R be a rearrangement of N

for which A = A∗
R. Since A ∈ RM1, any block of A containing more than a fixed

number of terms with index in Lj (all of which are approximately equal), must also
contain a term with index in Lk for some k < j. But it is easy to show that any
such rearrangement R must be induced by an M -tree: we build our tree one level at
a time, letting the new entries between the two nodes a≺b be left daughters of b or
right daughters of a (it does not matter which we choose to do as long as we choose
an order consistent with the relative order of the newly inserted nodes). Thus we
have shown:

Theorem 2.10. If R is the rearrangement induced by an M -tree, then there exists

s0 = s0(M) > 0 such that AR ∈ RM1 whenever A = A∗ satisfies am ≤ C(n/m)san,

for all m > n > 0, and some s > s0, C > 0. Conversely, if A ∈ RM1 and if there

exists an s > 1 such that a∗
m ≥ c(n/m)sa∗

n for all m > n > 0, then A = A∗
R for some

rearrangement induced by an M -tree, M = M(c, s).

We now consider how conditions (i)–(iii) in Theorem 2.6 are related when we drop
the assumption that A is monotonic decreasing. It is obvious that (iii) implies (ii),
and it also implies (i), as we did not use monotonicity when proving this implication
in the theorem. However, (i) does not imply (ii) (let alone (iii)), as it is easy to
rearrange any monotonic sequence in RRM1 to get a sequence whose dyadic sums
do not satisfy (ii). One might hope that (ii), or perhaps some faster rate of decay of
the dyadic sums, implies (i). Perhaps surprisingly, the answer is always negative, as
the following proposition indicates.

Proposition 2.11. Given any sequence T > 0 there is a sequence A > 0 whose

dyadic sums dj ≡
∑2j+1−1

k=2j ak satisfy dj+1/dj ≤ tj but which is not in RRM1.

Proof. To prove the result for arbitrary T > 0, it suffices to prove it for some
T ′ ≤ T . We may therefore assume without loss of generality that ti < 1 for all i and
that for n ≥ 3,

t2n−n < 2n−2n

, (2.12)

t2n−n <

2n−1
∏

i=2n−n+1

tj
2

. (2.13)

Writing uj =
∏j−1

i=1 (ti/2)2, we define B to be the monotonic sequence whose terms

are constant on dyadic blocks, and whose dyadic sums ej ≡
∑2j+1−1

i=2j bi = 2jb2j are
given by the formula

ej =

{

u2n , if 2n − n < j ≤ 2n, for some n > 2,

uj , otherwise.
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For the rest of the proof, n is any integer greater than 2. We define the nth
plateau, P (n) = {j ∈ N | 2n − n < j ≤ 2n}, and the nth pre-plateau, PP (n) =
{j − n | j ∈ P (n)}. We also write P (∗) =

⋃

n>2 P (n) and PP (∗) =
⋃

n>2 PP (n).
Given any sequence, we call one of its terms an nth plateau term if the term’s index
is in Lj ≡ {k ∈ N | 2j ≤ k < 2j+1 − 1} for some j ∈ P (n); we define nth pre-plateau

terms similarly. Away from the plateaus, the dyadic sums ej decrease at a faster rate
than required, but ej+1 = ej whenever j, j + 1 ∈ P (∗).

There is a much larger than necessary decrease for j = 2n − n, which we shall
exploit. To do so, we first define a perturbation B′ of B by changing a single term bkj

in the jth dyadic block (we may choose kj = 2j) whenever j ∈ PP (∗). Specifically
we choose

b′kj
≡ cj = u2n−n

j+n−1
∏

i=2n−n

tj
2

.

Note that we have the following important facts: if j ∈ PP (n), then (2.12) implies
that cj is less than any nth pre-plateau term of B, while (2.13) implies that cj is
larger than any nth plateau term.

For all j ∈ PP (n), n > 2, we swap b′kj
with some term in the (j + n)th dyadic

block of B′, and refer to the resulting rearrangement of B′ as A. Let us denote by
dj the jth dyadic sum of A, and write rj = dj+1/dj . We claim that rj < tj for all j.
If neither j nor j + 1 are in P (∗) ∪ PP (∗), then rj = t2j/4 < tj ; similarly, if j = 2n,

then rj < t2j/4 < tj . If j = 2n − n, then

rj <
cj−n+1 + u2n

dj
<

2tj + t2j
4(1 − 2−j)

< tj .

Similarly, if j+1 ∈ PP (n), then rj < (t2j/4)(1−2−j)−1 < tj . Finally, if j, j+1 ∈ P (n),

then rj < (cj+1 + u2n)/cj < 2tj/2.

By construction, the altered terms fit in the last n spots of the (2n − n)th dyadic
block of A∗, and the plateau terms of A∗ are exactly the same as those of B′ (or B).
Thus A∗ has n consecutive equal dyadic sums, for arbitrarily large n. By Theorem
2.6, A /∈ RRM1. �
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