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Abstract. We develop a basic theory of distributive algebras, a certain
class of universal algebras that generalize the class of (associative and nonas-
sociative) rings. We then define and investigate isoclinism for distributive
algebras—this is an equivalence relation among distributive algebras of a
particular type—and we relate isoclinism to ring theory via isologism with
respect to varieties of (possibly nonassociative) rings. Associated with any
given ring variety is a map from rings to distributive algebras of a particular
type, and we say that rings are isologic with respect to this variety if the as-
sociated distributive algebras are isoclinic. Certain probability functions on
finite distributive algebras are invariant under isoclinism. These invariants
allow us to derive some combinatorial consequences in ring theory by using
an appropriate isologism.

1. Introduction

Isoclinism for groups is an equivalence relation that was introduced by Hall
[10] and is used widely in the literature of group theory. The more general
concept of group isologism, which is essentially isoclinism with respect to a
variety of groups was also introduced by Hall [11]. For more on group isoclinism
and isologism, see for instance [1] and [12], respectively.

There are existing notions of isoclinism for rings and Lie algebras due to Kruse
and Price [14] and Moneyhun [15], respectively. In [3, Section 3], a new type
of isoclinism was introduced. The major difference between this concept and
the earlier ones is that additive group isomorphisms rather than ring homomor-
phisms were employed in the definition. The extra flexibility provided by this
difference was an essential ingredient for the investigation of the commuting
probability of a finite ring in that paper.

In the current paper, we develop a much more general theory of isoclinism,
again using group isomorphisms. We relate isoclinism to ring theory via isol-
ogism with respect to varieties of (possibly nonassociative) rings. Any given
isologism sets up a map from rings to distributive algebras. We then use our
theory to obtain further results concerning the commuting probability and re-
lated concepts of combinatorial ring theory.

The setting for our theory of isoclinism is a class of universal algebras that
we call distributive algebras. Such algebras include as special cases possibly
nonassociative rings (abbreviated in the rest of the paper as PN rings), as well
as Lie and Jordan triple systems and Jordan ∗-triple systems. We develop a
rudimentary theory of such algebras sufficient for the needs of our subsequent
theory of isoclinism.
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Rather than saying any more about isoclinism and isologism at this point, we
will instead state some ring theoretic consequences. First we need to define some
probability functions on the class of finite PN rings, and associated spectra.

We use a formal “noncommutative polynomial” f(X, Y ) = aXY + bY X,
where a, b ∈ Z, as a symbol of a function fR : R×R→ R, fR(x, y) := axy+byx,
defined on an arbitrary PN ring R. For such an f , and a PN ring R of finite
cardinality, we define

(1.1) Prf (R) :=
|{(x, y) ∈ R×R : fR(x, y) = 0}|

|R|2
,

where |S| denotes the cardinality of a set S. Whenever C is a class of finite PN
rings, we define the associated f -spectrum Sf (C) ⊆ Q ∩ (0, 1] by

Sf (C) := {Prf (R) | R ∈ C} .
Our first result says that associativity makes no difference for any of these

spectra; in fact we will see in Theorem 5.9 and Remark 5.10 that the same
conclusion holds for some other function symbols f . Throughout this paper, we
allow rings and PN rings to be non-unital.

Theorem 1.1. Let f(X, Y ) := aXY + bY X for some a, b ∈ Z, and let C and
Cpn be the classes of all finite rings, and all finite PN rings, respectively. Then
Sf (C) = Sf (Cpn).

We use special names and notation for Prf (R) and Sf (C) in connection with
three fundamental functions f of this type. For f(X, Y ) = XY − Y X, we
speak of the commuting probability Prc(R) and commuting spectrum Sc(C); for
f(X, Y ) = XY + Y X, the anticommuting probability Prac(R) and anticom-
muting spectrum Sac(C); and for f(X, Y ) = XY , the annihilating probability
Prann(R) and annihilating spectrum Sann(C).

The next result links spectra for different choices of f .

Theorem 1.2. Let f(X, Y ) := aXY + bY X for some a, b ∈ Z, and let C be the
class of all finite rings. Then Sann(C) ⊇ Sf (C).

Our use of isoclinism in this paper establishes the above links between the
various spectra while paying no attention to the precise values that lie in these
spectra. Thus the above results are complementary to those in [3] where we
examine only commuting spectra but prove some rather precise results: specif-
ically, we characterize all t ∈ [11/32, 1] that lie in the commuting spectrum for
finite rings, and all t ∈ [(p3 +p2−1)/p5, 1] in the commuting spectrum for rings
of order a power of a prime p.

After some preliminaries in Section 2, we discuss distributive algebras in Sec-
tion 3, and then isoclinism and isologism in Section 4. Finally we discuss iso-
clinism invariants such as the commuting probability in Section 5, and prove
the results stated above.

2. Preliminaries

The unqualified term ring always mean an associative ring. Both PN rings and
rings are allowed to be nonunital. If p is a prime, a (PN) Zp-algebra is a (PN)
ring R such that pR = {0}, and a (PN) p-ring is a (PN) ring whose cardinality
is finite and a power of p. More generally a classical (PN) algebra over a
field F is a vector space over F with a bilinear product (which is associative
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if the PN qualifier is omitted); again it is not necessarily unital. We use the
qualifier classical here because we will use the unadorned term algebra only in
the universal algebra sense of a nonempty set with an associated collection of
fundamental operations, as discussed in Section 3.

We write Zn for ring of integers mod n ∈ N, and Op for the null ring of prime
order p.

Let us define a few additive subgroups of (R,+) associated with a PN ring R.

• We inductively define Rn for n ∈ N: R1 = R and, for n > 1, Rn is
the subgroup of R generated by products xy, where either x or y lies in
Rn−1. Thus for instance the subgroup R3 is generated by all elements
of form (xy)z or x(yz), x, y, z ∈ R, while R4 is generated by elements
of the form ((xy)z)w, (x(yz))w, x((yz)w), and x(y(zw)). Note that
u := (xy)(zw) ∈ R3, but it is possible that u /∈ R4 if R is nonassociative.
• [R,R], the commutator subgroup, is generated (additively) by all com-

mutators [x, y] = xy − yx.
• 〈R,R〉, the anticommutator subgroup, is generated (additively) by all

anticommutators 〈x, y〉 = xy + yx.
• Ann(R) = {a ∈ R | ax = xa = 0 for all x ∈ R} is the annihilator of R.
• Z(R) = {a ∈ R | [a, x] = 0 for all x ∈ R} is the center of R.
• AZ(R) = {a ∈ R | 〈a, x〉 = 0 for all x ∈ R} is the anticenter of R.

Some of the above subgroups behave well under multiplication: in fact, Rn

and Ann(R) are ideals, while Z(R) is a subring. However the other subgroups
defined above are not in general closed under multiplication.

3. Distributive algebras

In this section we develop a basic theory of what we call distributive algebras:
these are universal algebras with certain properties that generalize the class of
PN rings. For the general theory of universal algebras, we refer the reader to
[8], [9], or [13].

We begin with some preparatory definitions. If S is any set, we define S×0 =
{∅}, while S×n is the cartesian product1 of n copies of S for all n ∈ N.

An algebra A consists of an underlying set2, also denoted A, with an attached
set of fundamental operations gA : A×n → A; here, the non-negative integer n
can depend on gA and is called the arity of gA. We speak of nullary, unary, or
binary operations if n = 0, n = 1, or n = 2, respectively. A nullary operation is
a significant constant, such as 0 or 1 in a unital ring.

We often use vector-style notation for the argument list of an operation in
an algebra. Thus if gA is an n-ary operation on A, and if we write gA(x) then,
unless otherwise stated, x = (x1, . . . , xn) ∈ A×n. We call each xi a coordinate of
x and the coordinate set of x is CS(x) = {x1, . . . , xn}. The algebras of interest
to us are built on an abelian group, and we define sums x+y by coordinate-wise
addition. The case n = 0 is special since then x = ∅.

1We write the cartesian product as S×n rather than Sn because we reserve the latter
notation for product ideals in a PN ring, as defined in the previous section.

2It is common in the universal algebra literature to distinguish notationally between an
algebra and the underlying set. However, since we are mainly interested in algebras whose
operations are defined in terms of the operations of an underlying ring, we use the ring
theoretic convention of avoiding such notational distinctions. Of course this requires that we
distinguish notationally between two distinct algebras that have the same underlying set.
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3.1. Distributive algebras. Suppose gA is an n-ary operation on an abelian
group (A,+) for some n ∈ N. We say that gA is distributive over addition if it
is multilinear over A as a Z-module. Explicitly, if x, y, z ∈ A×n are such that
zj = xj +yj for some 1 ≤ j ≤ n, and zk = xk = yk for all 1 ≤ k ≤ n, k 6= j, then
gA(z) = gA(x) + gA(y). This generalizes the usual definition of distributivity of
multiplication in a ring.

Definition 3.2. Suppose I is an index set and ρ : I → N. An (I, ρ)-algebra is
an abelian group (A,+) with an associated set of ρ(i)-ary operations gAi on A,
i ∈ I, such that gAi is distributive over addition whenever ρ(i) > 0; (I, ρ) is the
type of A. A distributive algebra means an (I, ρ)-algebra for some type (I, ρ).

If |I| is small, it is convenient to take the index set to be {1, . . . , k} and to
write the type as [ρ(1), . . . , ρ(k)] instead of (i, ρ). For instance, the concepts of
PN rings and [2]-algebras coincide, while a unital PN ring is a [2, 0]-algebra A
such that gA2 (∅) satisfies the identities gA1 (gA2 (∅), x) = gA1 (x, gA2 (∅)) = x for all
x ∈ A.

If A is an (I, ρ)-algebra and 0 ∈ CS(x), x ∈ A×n, then gAi (x) = 0 for all i ∈ I.
This follows as for rings by writing 0 = 0 + 0 and using distributivity.

Sometimes, as in Definition 3.2, we want to discard the nullary operations.
We denote by (I0, ρ0) the reduced type corresponding to the type (I, ρ): this
means that the reduced index set I0 consists of all i ∈ I such that ρ(i) > 0, and
ρ0 := ρ|I0 . An (I, ρ)-algebra is said to have reduced type if I = I0: general rings
and PN rings are of reduced type, whereas unital rings and unital PN rings are
not if the unity is considered to be part of the structure.

3.3. Subalgebras and ideals. We first define subalgebras, homomorphisms,
and ideals for distributive algebras. We use the full index set I for defining
subalgebras and homomorphisms but only the reduced index set I0 for defining
ideals. This is consistent with the usual convention in the theory of unital rings
that subrings contain the same unity as the full ring, and homomorphisms map
unity to unity, but of course ideals are not required to contain the unity.

Definition 3.4. An (I, ρ)-algebra B is a subalgebra of an (I, ρ)-algebra A,
denoted B ≤ A, if (B,+) is a subgroup of (A,+), and each gBi is a restriction of
gAi . The trivial subalgebra 0 of A is the one containing only the single element
0.

Definition 3.5. A homomorphism (or isomorphism) from one (I, ρ)-algebra A
to another B is a group homomorphism (or isomorphism) φ : (A,+)→ (B,+)
such that for all i ∈ I with n := ρ(i), and all x ∈ A×n, y ∈ B×n, with

φ(xj) = yj for j = 1, . . . , n, we have φ(gAi (x)) = gBi (y). An endomorphism is a

homomorphism from an algebra to itself. We define AlgD to be the category of
all distributive algebras, with homomorphisms as the morphisms.

Definition 3.6. An ideal in an (I, ρ)-algebra A is a subgroup J of (A,+) with
the property that gAi (x) ∈ J whenever i ∈ I0, x ∈ A×ρ(i), and CS(x) ∩ J is
nonempty; as always (I0, ρ0) is the reduced type corresponding to (I, ρ). We
write J E A or A D J if J is an ideal in A. An ideal in an (I, ρ)-algebra is
implicitly an (I0, ρ0)-algebra.
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Note that by distributivity, an additive subgroup J generated (additively) by
a set S is an ideal if gAi (x) ∈ J whenever i ∈ I0, x ∈ A×ρ(i), and CS(x) ∩ S is
nonempty.

The intersection
⋂
j∈J Aj of a collection of additive subgroups Aj of A is itself

a subgroup of A (and a subalgebra of A, or an ideal in A, if every Aj is a
subalgebra or ideal, respectively). Similarly if each Aj is an additive subgroup
(or ideal), and if we define the sum

∑
j∈J Aj as the set of finite sums of elements

in the individual sets Aj, then we get an additive subgroup (or ideal). When
the index set J is empty, an intersection

⋂
j∈J Aj of subgroups means A itself,

and a sum
∑

j∈J Aj of subgroups means the trivial subgroup.

We now define the two ideals of main interest to us for a given (I, ρ)-algebra
A with reduced index set I0.

Definition 3.7. The annihilator of A is Ann(A) =
⋂
i∈I0 Ann(A; i), where

Ann(A; i) = {a ∈ A | ∀ x ∈ A×ρ(i) : a ∈ CS(x)⇒ gAi (x) = 0} , i ∈ I0 .
Definition 3.8. The product ideal of A, π(A), is the subgroup of (A,+) gen-
erated by elements of π(A; i), i ∈ I0, where π(A, i) is the subgroup of (A,+)
generated by all elements of the form gAi (x), x ∈ A×ρ(i).

It is readily verified that both Ann(A) and π(A) are ideals in A. It is however
easy to construct algebras with more than one operation in which the subgroups
Ann(A; i) and π(A; i) fail to be ideals for any particular i. However π(A; i) will
be of interest later.

A null algebra is a distributive algebra A such that Ann(A) = A, or equiva-
lently π(A) = 0. Null algebras include in particular null-type algebras: these are
(I, ρ)-algebras where I is the empty set, and so they are simply abelian groups.

We now record a lemma for distributive algebras that generalizes a basic result
for rings. The proof is simple and of a standard type, but we include it as an
example of the use of these concepts.

Lemma 3.9. If J is an ideal in an (I, ρ)-algebra A, then the quotient group
A/J naturally has the structure of an (I, ρ)-algebra.

Proof. A/J is an additive group, and we make it into an (I, ρ)-algebra by defin-

ing g
A/J
i (x + J) = gAi (x) + J for all x ∈ A×ρ(i), i ∈ I; here x + J means

(x1 + J, . . . , xn + J). We need to check that this is well-defined for i ∈ I0. Fix-
ing i ∈ I0, we let n := ρ(i), x ∈ A×n, and y ∈ J×n. By distributivity, gAi (x+ y)

equals gAi (x) plus a sum of terms of the form gAi (z) where CS(z) ∩ CS(y) is

nonempty. Consequently gAi (x + y) − gAi (x) ∈ J , as required. Finally, we note

that g
A/J
i inherits distributivity over addition from gAi . �

Whenever we write g
A/J
i below, we always mean the natural map as defined

in the above proof.

Remark 3.10. Using distributivity as in Lemma 3.9, we see that g
A/Ann(A)
i

factors through A to yield a natural map g̃Ai : (A/Ann(A))×n → A.

Definition 3.11. Suppose Aj is an (I, ρ)-algebra for every j in some nonempty
index set J . Let A be the cartesian product of the underlying sets Aj, j ∈ J ,
and let B be the subset of A consisting of those (aj)j∈J such that aj = 0 for
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all except finitely many indices j. The direct product
∏

j∈J Aj and the direct

sum
⊕

j∈J Aj consist of the sets A and B, respectively, with the associated

operations gAi and gBi induced from those of the algebras Aj in a coordinate-
wise manner. In this way, a direct product of (I, ρ)-algebras is an (I, ρ)-algebra,
and a direct sum of a (I, ρ)-algebras is an (I0, ρ0)-algebra, where (I0, ρ0) is the
reduced type corresponding to (I, ρ).

It is readily verified that direct products and direct sums commute with the
taking of annihilators and products:

(3.1) Ann (�j∈JAj) = �j∈J Ann(Aj) and π (�j∈JAj) = �j∈Jπ(Aj) ,

where � is either a direct sum or a direct product.

3.12. Nilpotency and annihilator series for distributive algebras. Cen-
tral series for groups are well known, and the analogous concept of an annihilator
series for nilpotent rings is developed in [14, Section 1.3]. Here we extend the
concept of annihilator series from rings to distributive algebras.

Definition 3.13. A finite sequence of ideals (Aj)
m
j=0, m ≥ 0, in an (I, ρ)-algebra

A is said to be a partial annihilator series if

A0 D A1 D · · ·Am
and Aj−1/Aj ≤ Ann(A/Aj) for 1 ≤ i ≤ m; note that this last condition is an
(I0, ρ0)-subalgebra condition, where (I0, ρ0) is the reduced type corresponding to
(I, ρ). An annihilator series (of length m) is a partial annihilator series (Aj)

m
j=0

such that A0 = A and Am = 0. A is nilpotent if it has an annihilator series,
and the exponent, exp(A), is the smallest length m of an annihilator series of
A. We write exp(A) =∞ if A is not nilpotent.

We will now define upper and lower annihilator series as the algebra analogue
of upper and lower central series for groups, and we will see that these are
indeed annihilator series in the case of nilpotent algebras, generalizing Kruse
and Price’s result for rings ([14, Theorem 1.3.1]).

Definition 3.14. The upper annihilator series (Annj(A))∞j=0 is defined by

Ann0(A) := 0 ,

Annj(A) := {a ∈ A | ∀ i ∈ I0, x ∈ A×ρ(i) :

a ∈ CS(x)⇒ gAi (x) ∈ Annj−1(A)} , j ∈ N .

Equivalently, Annj−1(A) ≤ Annj(A) and

Annj(A)/Annj−1(A) = Ann(A/Annj−1(A)) .

Definition 3.15. The lower annihilator series (πj(A))∞j=0 is defined by π0(A) =
A and, for all j ∈ N, πj(A) is defined inductively as the subgroup generated by
elements of the form gAi (x), i ∈ I0, where at least one of the coordinates xk lies
in πj−1(A).

Examining the above definitions, it is clear that Ann1(A) = Ann(A), π1(A) =
π(A), and that Annj(A) and πj(A) are ideals for all j ≥ 0. Note that if A is a
PN ring, then πj(A) = Aj+1, where Aj+1 is as defined in Section 2.
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Lemma 3.16. If (Aj)
m
j=0 is an annihilator series of a distributive algebra A,

then πj(A) ≤ Aj ≤ Annm−j(A) for all 0 ≤ j ≤ m.

Proof. Let (I, ρ) be the type of A. By definition π0(A) = A0 = A, so suppose
πj−1(A) ≤ Aj−1 for some 1 ≤ j ≤ m. Suppose a ∈ πj−1(A), and so a ∈ Aj−1.
Since Aj−1/Aj ≤ Ann(A/Aj), we have gAi (x) ∈ Aj whenever i ∈ I0 and a ∈
CS(x). Since i ∈ I0 and a ∈ πj−1(A) are arbitrary, we deduce that πj(A) ≤ Aj,
and so this containment follows iteratively for all 0 ≤ j ≤ m.

As for the other containment, we have Am = Ann0(A) = 0, so suppose that
Aj+1 ≤ Annm−j−1(A) for some 0 ≤ j < m. Now Aj/Aj+1 ≤ Ann(A/Aj+1),
so if a ∈ Aj and i ∈ I0, then gAi (x) ∈ Aj+1 ≤ Annm−j−1(A) whenever a ∈
CS(x). Since i ∈ I0 is arbitrary, it follows that a ∈ Annm−j(A), and so Aj ≤
Annm−j(A). Thus this containment follows iteratively for all 0 ≤ j ≤ m. �

It is now easy to deduce the following theorem.

Theorem 3.17. The following conditions are equivalent for a distributive alge-
bra.

(a) There exists m ≥ 0 such that πm(A) = 0.
(b) There exists m ≥ 0 such that Annm(A) = A.
(c) A is nilpotent.

Moreover if A is nilpotent then exp(A) is both the least integer m such that
πm(A) = 0 and the least integer m such that Annm(A) = A.

Proof. Clearly initial segments (Annj(A))mj=0 and (πj(A))mj=0 of the upper and
lower annihilator series of A are partial annihilator series (written in reverse
order in the case of the upper annihilator series), so both (a) and (b) imply
(c). The fact that πj(A) ≤ Aj for any annihilator series (Aj)

m
j=0 shows that

(c) implies (a), and that exp(A) is the least integer m such that πm(A) = 0.
The fact that Aj ≤ Annm−j(A) for any annihilator series (Aj)

m
j=0 shows that (c)

implies (b), and that exp(A) is the least integer m such that Annm(A) = A. �

Nilpotency and the nilpotent exponent behave well under taking of subal-
gebras, quotients, direct products, and direct sums, but generally the lower
annihilator series behaves better than the upper annihilator series as we now
explain.

If B is a subalgebra of A, it is readily verified that πj(B) ⊆ πj(A) for j ≥ 0,
and so exp(B) ≤ exp(A). By contrast, there is in general no relationship
between Annj(A) and Annj(B). For instance, if A is a semisimple Lie algebra
and B is a one-dimensional subalgebra of A, then 0 = Annj(A) ≤ Annj(B) = B
for all j ∈ N. By contrast if B is a subalgebra of a null algebra A, then
B = Annj(B) ≤ Annj(A) = A for all j ∈ N.

It is straightforward to verify that the upper or lower annihilator series of a
direct product (or direct sum) of (I, ρ)-algebras Aj is obtained by taking direct
products (or direct sums) of the corresponding terms in the upper or lower
annihilator series of Aj. It is also clear that if the algebras Aj are all nilpotent
of exponent at most m, then the direct product and direct sum of these algebras
are also nilpotent of exponent at most m.

Finally we consider quotients or, equivalently, homomorphic images. The
lower annihilator series is fully invariant, meaning that φ(πj(A)) ⊆ πj(B) when-
ever φ : A → B is a homomorphism and j ∈ N. This can be established by a
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routine induction proof which we omit. It follows that homomorphisms preserve
nilpotency and that exp(φ(A)) ≤ exp(A) whenever φ is a homomorphism.

By contrast, the upper annihilator series is not fully invariant. To see this, it
suffices to show that Ann(A) is not fully invariant. Consider a distributive alge-
braA which contains a null subalgebraN and satisfies Ann(A) = 0: for instance,
A could be a semisimple Lie algebra and N a one-dimensional subalgebra. Let
B := A ⊕ N and define the endomorphism f : B → B by φ(x ⊕ y) = y ⊕ 0.
Then Ann(B) = 0⊕N , but φ(Ann(B)) has trivial intersection with Ann(B).

The upper annihilator series is however invariant under surjective homomor-
phisms, as we now show.

Proposition 3.18. If φ : A→ B is a surjective homomorphism of distributive
algebras, then φ(Annj(A)) ⊆ Annj(B) for all j ≥ 0.

Proof. We prove the result inductively. It trivially holds for j = 0, so suppose
it holds for j = k − 1, k ∈ N, and that a ∈ Annk(A). Thus gAi (x) ∈ Annk−1(A)
whenever i ∈ I0, x ∈ A×ρ(i), and a ∈ CS(x). We fix such an a and write b = φ(a).
Applying the homomorphism property, we see that gBi (y) ∈ φ(Annk−1(A)) ⊆
Annk−1(B) whenever i ∈ I0, y ∈ (φ(A))×ρ(i), and b ∈ CS(y). Since φ(A) = B,
it follows that b ∈ Annk(B), completing the proof of the inductive step. �

3.19. Multilinear polynomials and varieties of rings. Multilinear polyno-
mials provide a link between rings and distributive algebras. A (nonassocia-
tive noncommutative) multilinear monomial in the unknowns X1, . . . , Xn is an
element of the free magma in these unknowns, with each unknown occurring
exactly once. Equivalently, such a monomial is a nonempty nonassociative word
in these variables where we use each unknown once and parentheses indicate
the order of “multiplication”: thus X1(X2X3), (X1X2)X3, and (X2X3)X1 are
distinct monomials. The degree of such a multilinear monomial is the number
n of unknowns.

The class of (nonassociative noncommutative) multilinear polynomials of de-
gree n over a commutative unital ring S, MLn(S), is the free S-module with ba-
sis consisting of all multilinear monomials in the unknowns X1, . . . , Xn, i.e. sums
of multilinear monomials of degree n, each multiplied by an element of S. We
will only consider the case where the base ring S is Z, but S = Zm for m being
a prime power could be useful in other situations.

When n is small, we denote the unknowns as X, Y, . . . rather than X1, X2, . . . .
We use function-style notation, writing either f or f(X1, . . . , Xn), depending
on the situation. For instance, f(X, Y, Z) := X(Y Z) − 2(Y X)Z ∈ ML3(Z).
A bilinear polynomial over Z is an element of ML2(Z), so it has the form
f(X, Y ) := aXY + bY X for some a, b ∈ S. We write ML(Z) =

⋃∞
n=1 MLn(Z).

Each element of f ∈ MLn(Z) naturally gives rise to a function on any given
PN ring R; we denote this function by fR. We say that a PN ring R satisfies
f ∈ MLn(Z) if fR(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ R, and we call f a law of
R.

In the universal algebra literature, a variety is a class of algebraic structures
of a given type satisfying a certain set of identities or laws. We use the term
in this sense but we restrict the allowable laws to those that are multilinear. A
subtle but important point of our definition is that we take the set V of laws
that determine a variety V to be part of the structure of V : if two classes of
rings (or PN rings) V1 and V2 are equal as classes, and both are varieties but
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given by different sets of laws V1 and V2, then we do not consider V1 and V2 to
be the same variety.

Suppose V ⊆ ML(Z). The variety of rings determined by V is the collection
V of all rings R having every f ∈ V as a law. Similarly we can define a variety
of PN rings determined by V . For brevity, we speak of associative varieties
and PN varieties instead of varieties of rings or of PN rings, respectively, and
all varieties are determined by some V ⊆ ML(Z). A variety V means either
an associative or a PN variety, and any element f of the determining set V is
called a law of V .

If n ∈ N is the maximal degree of a law of V , we call V a degree n variety.
We are especially interested in three fundamental degree two varieties that are
each given by a single bilinear law: the variety of null rings Vn is the collection
of rings R with the law f(X, Y ) = XY , while the varieties of commutative
and anticommutative rings Vc and Vac are the collections of rings with laws
f(X, Y ) = XY −Y X or f(X, Y ) = XY +Y X, respectively. The corresponding
PN varieties are denoted Vn,pn, Vc,pn, and Vac,pn, respectively; of course Vn,pn =
Vn.

We also define two trivial varieties, both of which contain only the trivial
ring: V0 is determined by the single law f1(X) := X, while V ′0 is determined by
two laws, f1(X) := X and f2(X, Y ) := XY .

3.20. Varieties and distributive algebras. Suppose V is a variety deter-
mined by V . Let I := V and ρ(f) := deg(f) for all f ∈ V . The standard
construction of a distributive algebra from a PN ring R relative to V is to dis-
card the original multiplication operation on R and replace it by the operations
gf := fR, f ∈ I; we write RV for the resulting (I, ρ)-algebra.

Given a ring or PN ring R, and a variety V determined by V ⊆ ML(Z), we
define the verbal subgroup V (R) to be the additive subgroup of R generated by
all elements fR(x1, . . . , xn) ∈ R, where f ∈ V has degree n = n(f).

We define the marginal subgroup V ∗(R) to be the set of all x ∈ R such that
fR(x1, . . . , xn) = 0 whenever f ∈ V and x1, . . . , xn ∈ R, with at least one of
these elements equal to x.

It is clear that we have the set equations V (R) = π(RV) and V ∗(R) =
Ann(RV). But, since we view V (R) and V ∗(R) as being associated with the
ring R rather than the algebra RV , there are differences between their closure
properties: V (R) and V ∗(R) are in general merely additive subgroups in R,
whereas π(RV) and Ann(RV) are ideals in the (I, ρ)-algebra RV .

The lower marginal series (Vj(R))∞j=0 of R is the series of additive subgroups
of R given by Vj(R) := (πj(A),+), j ≥ 0. The upper marginal series (V ∗j (R))∞j=0

of R is the series of additive subgroups of R given by V ∗j (R) := (Annj(A),+),
j ≥ 0. We say that R is V-nilpotent if RV is nilpotent, which is equivalent to
Vj(R) = 0 for some j ∈ N, and to V ∗j (R) = (R,+) for some j ∈ N.

Let us pause to consider the verbal and marginal subgroups for the trivial
varieties and the three fundamental degree two varieties mentioned in §3.19.

(a) If V := V0 or V := V ′0, then V (R) = R and V ∗(R) = 0.
(b) If V := Vn, then V (R) = R2 and V ∗(R) = Ann(R).
(c) If V := Vc, then V (R) = [R,R] and V ∗(R) = Z(R).
(d) If V := Vac, then V (R) = 〈R,R〉 and V ∗(R) = AZ(R).

Let us now consider the closure properties of V (R) and V ∗(R) in the above
cases. For V := V0 or V := V ′0, V (R) and V ∗(R) are trivially ideals. For V = Vn,
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both V (R) and V ∗(R) are ideals in R; of course this must be so because R = RV
in this case. For V = Vc, V ∗(R) is a subring but not necessarily an ideal, and
V (R) may fail even to be a subring. For V = Vn, both V ∗(A) and V (R) may
fail to be subrings.

4. Isoclinism and isologism

We now develop a theory of isoclinism for distributive algebras. We will relate
this theory to PN rings via the concept of isologism. Some earlier notions of
isoclinism for some classes of PN rings in [14], [15], and [3] can be formulated
in terms of these notions of isoclinism and isologism, as we will see in §4.22.

Although our terminology is inspired by analogous concepts in group theory,
and although there are some echoes of group theoretic results in the theory
that we develop, there are also some important differences. Perhaps the most
important is that unlike group isoclinism, we will see that algebra isoclinism
does not preserve nilpotency. But, rather than being a deficiency, this failure is
a key feature of the theory and will be central to our proof of Theorem 1.1.

Another difference involves the relationship between isoclinism and isologism.
Group isoclinism is a single equivalence relation on the class of all groups, while
isologism is a family of such equivalence relations—one for each group variety—
and isoclinism is just isologism with respect to a particular group variety. The
relationship between isoclinism and isologism in this paper is quite different
than this. Although isoclinism is a single concept for distributive algebras, each
type of algebra gives rise to its own isoclinism. Isologism is a concept on the class
of (PN) rings, and there is a distinct isologism for each appropriately defined
variety of (PN) rings. Associated with each isologism is a map from the class of
(PN) rings to the class of distributive algebras of a particular type, and a pair
of (PN) rings are then isologic if the associated pair of distributive algebras are
isoclinic.

Definition 4.1. An isoclinism from one (I, ρ)-algebra A to another one B
consists of a pair of additive group isomorphisms φ : A/Ann(A)→ B/Ann(B)
and ψ : π(A) → π(B) such that if i ∈ I0 and φ(xj + Ann(A)) = yj + Ann(B),
j = 1, . . . , ρ(i), then ψ(gAi (x)) = gBi (y). As usual, I0 is the reduced index set.

We next define some functions that will allow us to give an alternative defini-
tion of the above isoclinism (φ, ψ). As mentioned in Remark 3.10, the operation
gRi for R = A,B gives rise to a multilinear map

g̃Ri : (R/Ann(R))×n → π(R; i) ,

and hence, via the universal property of tensor products, we get a surjective
homomorphism

gR;⊗
i : (R/Ann(R))⊗n → π(R; i) ,

The isomorphism φ : A/Ann(A)→ B/Ann(B) induces an isomorphism

φ⊗n : (A/Ann(A))⊗n → (B/Ann(B))⊗n .

Finally, we define ψi to be ψ|π(A,i).
With these newly defined maps, it follows that A and B are isoclinic via (φ, ψ)

if and only if Figure 1 is a commutative diagram for each i ∈ I0 and n := ρ(i).
The one part of this equivalence that is not immediately obvious is the fact that
ψi : π(A; i) → π(B; i) is surjective, but this follows from the commutativity of
the diagram and the surjectivity of the other three maps.

In particular, we make the following observation.
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(A/Ann(A))⊗n
φ⊗n

∼=
//

gA;⊗i

����

(B/Ann(B))⊗n

gB;⊗
i

����

π(A; i)
ψi
∼=

// π(B; i)

Figure 1. Isoclinism between (I, ρ)-algebras

Observation 4.2. If A and B are isoclinic, then π(A; i) is isomorphic to π(B; i).

The following result establishes some fundamental properties of isoclinism.

Theorem 4.3.
(a) Isoclinism is an equivalence relation on the class of distributive algebras

of any given type.
(b) All null algebras of a given type are isoclinic.
(c) If, for all j in a nonempty index set J , (φj, ψj) is an isoclinism from

one (I, φ)-algebra Aj to another one Bj, then
∏

j∈J Aj is isoclinic to∏
j∈J Bj, and

⊕
j∈J Aj is isoclinic to

⊕
j∈J Bj.

(d) Isomorphic algebras are isoclinic.

Proof. Parts (a) and (b) are readily verified. As for (c), we write A :=
∏

j∈J Aj
and B :=

∏
j∈J Bj. It follows from (3.1) that there are product maps φ :

A/Ann(A) → B/Ann(B) and ψ : π(A) → π(B) defined in a coordinate-wise
manner from the isoclinism maps for the pairs (Aj, Bj), and it is readily verified
that (φ, ψ) is the desired isoclinism. The corresponding isoclinism for direct
sums is obtained by restriction of φ and ψ.

The proof of (d) is fairly routine, but we include it for completeness. Let
A,B be algebras of type (I, ρ), with (I0, ρ0) being the reduced type. We write
0 for both of the elements 0A and 0B and, fixing an arbitrary i ∈ I0, we write
n := ρ(i). Let Φ : A→ B be an isomorphism, and let us write Φ : A×n → B×n

for the cartesian product of n copies of Φ.
Proposition 3.18 implies that Φ(Ann(A)) ⊆ Ann(B). Thus φ(x+ Ann(A)) :=

Φ(x) + Ann(B), x ∈ A, gives a well-defined map φ : A/Ann(A)→ B/Ann(B).
It is clear that φ is a surjective group homomorphism, and we now show that

it is injective. Suppose φ(x+Ann(A)) = φ(y+Ann(A)), and so Φ(z) ∈ Ann(B),
where z := y − x. Now let x, z ∈ A×n, with zj = z for some 1 ≤ j ≤ n, and
zk = 0 for all 1 ≤ k ≤ n, k 6= j. Let w ∈ A×n and w′ ∈ B×n be such that
wj = zj, wk = xk for all other 1 ≤ k ≤ n, and w′k = Φ(wk) for all 1 ≤ k ≤ n.
Then

Φ(gAi (x+ z)) = Φ(gAi (x)) + Φ(gAi (w)) = Φ(gAi (x)) + gBi (w′) = Φ(gAi (x)) .

since w′j = Φ(zj) ∈ Ann(B). Since Φ is injective, it follows that gAi (x) =

gAi (x + z), and so z ∈ Anni(A). Since i ∈ I0 is arbitrary, we deduce that
z ∈ Ann(A), and that φ is injective as desired.

We next define ψ to be Φ|π(A). Clearly ψ : π(B) → B is an injective group
homomorphism. Since Φ(gAi (x)) = gBi (Φ(x)) for all x ∈ A×n, it follows that
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ψ(π(A)) ≤ π(B). On the other hand if x′ ∈ B×n, then the surjectivity of Φ
implies that there exists x ∈ A×n such that x′ = Φ(x), and now Φ(gAi (x)) =
gBi (x′). Since π(B) is generated by elements of the form gBi (x′), we deduce that
ψ : π(A)→ π(B) is a surjection.

The defining identity for (φ, ψ) being an isoclinism from A to B now follows
immediately from the isomorphism property of Φ. �

As discussed in §3.20, the standard construction associates a distributive al-
gebra with each PN ring in a way that depends on a given variety V . We now
use this association to define V-isologism.

Definition 4.4. Suppose V is a variety of rings (or PN rings) determined by
V ⊆ ML(Z). A pair of rings (or PN rings), R and S, are said to be V-isologic
if for every f ∈ V , there are additive group isomorphisms φ : R/V ∗(R) →
S/V ∗(S) and ψ : V (R) → V (R) such that if n = deg(f) and φ(xi + V ∗(R)) =
yi + V ∗(S), i = 1, . . . , n, then ψ(fR(x1, . . . , xn)) = fS(y1, . . . , yn).

Equivalently, PN rings R, S are V-isologic precisely when RV and SV are
isoclinic.

We call an isoclinism equivalence class of (I, ρ)-algebras an isoclinism fam-
ily, and we call an equivalence class of rings (or PN rings) with respect to
V-isologism a V-family.

The proofs of the two theorems in the introduction will each employ only a
single isoclinism (that of [2]-algebras), but they will use a different isologism for
each symbol f .

4.5. Isoclinism and isomorphism. By Theorem 4.3, isomorphic algebras are
isoclinic. We now look at the reverse implication. It is easy to give examples
of isoclinic algebras that are non-isomorphic. Indeed we can take two (I, ρ)-
algebras A and A′, where A′ is a null algebra of cardinality greater than 1.
Then the direct sum B := A⊕ A′ is isoclinic to A by Theorem 4.3, but B and
A are not even of the same cardinality.

Thus if we wish to find conditions under which isoclinic algebras A and
B are necessarily isomorphic, it seems reasonable to include the assumptions
Ann(A) = 0 and Ann(B) = 0 among those conditions.

We first show that these conditions alone are not sufficient, even in the context
of classical algebras over a field.

Proposition 4.6. There exist isoclinic but non-isomorphic classical algebras A
and B over a field F such that Ann(A) and Ann(B) are both trivial.

Proof. Let A := F [X], the polynomial ring over a field F , and B := XA. Then
Ann(A) = Ann(B) = 0 and there is a unique isomorphism φ from (A,+) to
(B,+) taking Xj to Xj+1 for all j ≥ 0. Also π(A) = A2 = A and π(B) = B2 =
X2A, and there is a unique isomorphism ψ from (A2,+) to (B2,+) taking Xj to
Xj+2 for all j ≥ 0. It is readily verified that (φ, ψ) is an isoclinism from A to B,
but A and B are non-isomorphic rings since A is unital and B is non-unital. �

We do not know of any pair of finite order isoclinic but non-isomorphic rings
that have trivial annihilators, or any pair of isoclinic but non-isomorphic rings
A and B that have trivial annihilators and satisfy A2 = A, B2 = B. However
dropping associativity makes it easy to give examples of this type.

Proposition 4.7. There exist two-dimensional classical PN algebras A and B
over any field F such that
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(a) Ann(A) and Ann(B) are both trivial.
(b) A2 = A and B2 = B.
(c) A is associative.
(d) A is isoclinic to, but not isomorphic to, B.

If instead A and B are three-dimensional PN algebras over F , then we can
arrange for (a)–(d) to be true, and for A and B to be unital.

Proof. Let A be the (associative) classical algebra over F with basis B = {a, b}
where xy = x for all x, y ∈ B. Let B be the nonassociative classical algebra
over F such that (B,+) = (A,+), a2 = ab = b, and ba = b2 = a. Parts (a),
(b), and (c) are obviously true, and A and B are not isomorphic because A is
associative and B is nonassociative (or because A has more idempotents than
B if we pick F to be a finite field). However A is isoclinic to B via (φ, ψ), where
φ is the identity map and ψ is defined by ψ(a) = b, ψ(b) = a.

The modification to 3-dimensional unital algebras consists basically of apply-
ing a Dorroh extension over F . Explicitly, we let (A1,+) := F ⊕A, (B1, ,+) :=
F ⊕B. Define multiplication in A1 by

(j ⊕ a)(j′ ⊕ a′) = jj′ ⊕ (ja′ + j′a+ aa′) , j, j′ ∈ F, a, a′ ∈ A ,
and define multiplication in B1 analogously. It is readily verified that (a)–(d)
remain true if we replace A by A1 and B by B1, and of course A1 and B1 are
unital. �

The discussion so far of isoclinism versus isomorphism shows that isoclinism
usually fails to imply isomorphism. We now switch to considering situations in
which such an implication is possible for an isoclinism (φ, ψ) from one distribu-
tive algebra A to another B, beginning with the following simple result.

Proposition 4.8. Isoclinic PN rings A and B are isomorphic if A and B have
right unities eA and eB, respectively, with φ(eA) = eB.

Proof. The existence of one-sided unities in A and B immediately implies that
Ann(A) = 0, Ann(B) = 0, A2 = A, and B2 = B. Thus ψ and φ are group
isomorphisms from (A,+) to (B,+) and

ψ(x) = ψ(xeA) = φ(x)φ(eA) = φ(x)eB = φ(x) , x ∈ A .
Thus ψ = φ, and now the isoclinism property tells us that φ(xy) = φ(x)φ(y),
so φ is the desired ring isomorphism. �

Proposition 4.8 is simple but not very satisfactory, since it is not hard to
give examples of isoclinisms (φ, ψ) between (isomorphic) unital rings A and B
where φ does not map the unity 1A of A to the unity 1B of B. For instance
if G := F (X) is the field of fractions of the polynomial ring F [X] over some
field F , then the equations φ(X i) = X i+1 and ψ(X i) = X i+2, i ∈ Z, can be
extended uniquely to group homomorphisms φ, ψ on (G,+), and it is readily
verified that (φ, ψ) is an isoclinism from G to itself. It is therefore natural to
ask if we can find isoclinic but non-isomorphic unital rings R and S. However
the next theorem says in particular that this is not possible.

Suppose A is an (I, ρ)-algebra and let i ∈ I0, n := ρ(i), and 1 ≤ j ≤ n. An
(i, j)-unity for A is an element e ∈ A such that gAi (x) = xj whenever xk = e for
all k 6= j.

Theorem 4.9. Suppose (φ, ψ) is an isoclinism between distributive algebras A
and B. Then A and B are isomorphic if either of the following conditions hold.
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(a) There exists i ∈ I0 and 1 ≤ j ≤ n := ρ(i) such that both A and B have
(i, j)-unities eA and eB, respectively, and φ(eA) = eB.

(b) A and B are unital rings.

Proof. The proof of (a) is easy, and generalizes the argument in Proposition 4.8.
First the existence of an (i, j)-unity for a distributive algebra R readily implies
that Ann(R) = 0 and π(R) = R, so ψ and φ are group isomorphisms from (A,+)
to (B,+). Considering the isoclinism condition for x ∈ A×ρ(i) with xk = eA for
all k 6= j, we deduce that ψ = φ, and so the isoclinism condition coincides with
the isomorphism condition.

We now prove (b). Let 1A and 1B denote the unities of A and B, respectively.
As before, ψ and φ are group isomorphisms from (A,+) to (B,+), A2 = π(A) =
A, and B2 = π(B) = B. Let eB := φ(1A) and eA := φ−1(1B). Now xy =
(xy)1A = 1A(xy), so the isoclinism property says that

(4.1) φ(x)φ(y) = φ(xy)eB = eBφ(xy) , x, y ∈ A .
Products in A additively generate A2 = A, and φ(A) = B, so it follows from
the second equation of (4.1) that eB ∈ Z(B).

Taking x = y = eA in (4.1), we see that eB is invertible with e−1B = φ(e2A).
Defining the group homomorphism η : (A,+) → (B,+) by η(x) = e−1B φ(x), it
follows from (4.1) that

η(x)η(y) = e−2B φ(x)φ(y) = e−1B φ(xy) = η(xy) .

Thus η is actually a ring isomorphism. �

Remark 4.10. The assumption φ(eA) = eB is essential in Theorem 4.9(a),
since by Proposition 4.7 there are unital classical PN algebras that are isoclinic
without being isomorphic.

We next see that by attaching the identity unitary operation to the structure
of a general distributive algebra A, we can recast isomorphism as a special type
of isoclinism.

Definition 4.11. Given a (I, ρ)-algebra A, we define another (I, ρ)-algebra AId

as follows.
(a) AId has the same underlying set as A.
(b) IId = I ∪ {iId}, where iId /∈ I.
(c) ρId : IId → N is defined by the equations ρId|I = ρ and ρ(iId) = 1.
(d) gAId

i = gAi for all i ∈ I.
(e) gAiId(x) = x for all x ∈ A.

Note that Id is naturally a functor on AlgD , and that A and B are isomorphic
if and only if AId and BId are isomorphic.

The importance of the Id functor is that every element in AId is an iId-unity
(in a rather degenerate way, but this is sufficient).

Proposition 4.12. Distributive algebras A and B are isomorphic if and only
if AId and BId are isoclinic.

Proof. Suppose AId and BId are isoclinic. The zero element is an iId-unity in
both AId and BId, so Theorem 4.9(a) says that they are isomorphic. Conversely
if A and B are isomorphic, then so are AId and BId, and hence they are isoclinic
by Theorem 4.3(d). �
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Remark 4.13. As mentioned previously, a null-type algebra is just an abelian
group. It is also clear that all null-type algebras are isoclinic. However if we
apply the Id functor to null-type algebras, we get the class of abelian groups
“with added structure”, and isoclinism on this class of structured abelian groups
(which form a subclass of the [1]-algebras) corresponds to abelian group isomor-
phism.

Remark 4.14. The reason we defined two different trivial varieties of rings
(V0 and V ′0) in §3.19 can now be given: they allow us to show both ring iso-
morphisms, and additive group isomorphisms, between rings are special types
of isologisms. First, it is clear that V0-isologism coincides with additive group
isomorphism since in this case we have the single law f1(X) := X, V (R) = R,
V ∗(R) = 0. Under the standard construction, the class of rings R give rise to
a class of [1]-algebras which can also be obtained by applying the Id functor
to the category of null-type algebras, so V0-isologism corresponds to isoclinism
of structured abelian groups as discussed in Remark 4.13. In short, rings are
V0-isologic if and only if their additive groups are isomorphic. On the other
hand, the standard construction of distributive algebra of a ring R with respect
to the variety V2 given by the single law f2(X, Y ) := XY just returns the same
ring. Appending the law f1(X) = X to V2 to obtain the trivial category V ′0
corresponds under the standard construction to applying the Id functor to the
category of rings. Thus by Proposition 4.12, rings are V ′0-isologic if and only if
they are (ring) isomorphic.

4.15. Canonical form. For group isoclinism, the notion of stem groups is
important: these are groups G such that Z(G) ≤ [G,G]. Equivalently for finite
groups, a stem group is a group of minimal order in its isoclinism family. This
notion does not however extend nicely to Z-isoclinism families of rings (see [3,
Section 3]), and even requires modification in the context of general isologism
families of groups [12, Section 8]. In its place for distributive algebras, it is
useful to define a standard representative for each isoclinism family of algebras;
we will say that this representative has canonical form.

Definition 4.16. A distributive algebra A has canonical form if:
(a) (A,+) is the internal direct sum of subgroups A1 and A2.
(b) π(A) = Ann(A) = A2.

We call a canonical-form member of an isoclinism family a canonical relative of
the other algebras in that family.

We now give an explicit construction for a canonical relative of any distribu-
tive algebra.

Definition 4.17. Given an (I, ρ)-algebra A, we define another (I, ρ)-algebra
Can(A). First, (Can(A),+) := A1 ⊕ A2, where A1 = (A/Ann(A),+) and
A2 = (π(A),+). As for the other operations,

g
Can(A)
i (x1, . . . , xn) := (0, g

A/Ann(A)
i (u1, . . . , un))

whenever xj = (uj, vj) ∈ A1 ⊕ A2, i ∈ I, 1 ≤ j ≤ n = ρ(i).

We next show that Can(A) is as promised a canonical relative of A, and
that it is unique up to isomorphism. Additionally, we will see that canonical
form algebras are more well-behaved than general algebras in that they are
isoclinic if and only if they are isomorphic, a result that can be contrasted with
Propositions 4.6 and 4.7.
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Theorem 4.18.

(a) Can(A) is a canonical relative of A whenever A is a distributive algebra.
(b) A pair of distributive algebras A and B are isoclinic if and only if Can(A)

and Can(B) are isomorphic.
(c) Canonical form distributive algebras are isoclinic if and only if they are

isomorphic.
(d) A canonical-form distributive algebra A is nilpotent of exponent at most

2.
(e) Nilpotency is not an isoclinism invariant.

Proof. By definition, A′ := Can(A) has the same type as A. It follows readily
that π(Can(A)) = Ann(Can(A)) = 0⊕ A2, and so Can(A) has canonical form.
Identifying A′/Ann(A′) with A1 ⊕ 0, we define φ : A/Ann(A) → A′/Ann(A′)
by the identity φ(a+ Ann(A)) = (a+ Ann(A), 0), and ψ : π(A)→ π(A′) by the
identity ψ(a) = (0, a), we see that (φ, ψ) is an isoclinism from A to A′.

We next prove (b). Since isomorphic distributive algebras are isoclinic (The-
orem 4.3(d)), and isoclinism is an equivalence relation, the fact that A and B
are isoclinic if Can(A) and Can(B) are isomorphic follows from (a). Conversely,
suppose that A and B are isoclinic via (φ, ψ). Thus (Can(A),+) := A1⊕A2 and
(Can(B),+) := B1 ⊕B2, where A1, A2 are as in Definition 4.17 and B1, B2 are
defined analogously. We write elements of Can(A) as a = (a1, a2), and similarly
b = (b1, b2) ∈ Can(B), where ai ∈ Ai and bi ∈ Bi, i = 1, 2.

Now φ : A1 → B1 and ψ : A2 → B2 are group isomorphisms, so we can define
a group isomorphism Φ : (Can(A),+)→ (Can(B),+) by Φ(a) = (φ(a1), ψ(a2)).
Suppose a1, . . . , an ∈ Can(A), where n = ρ(i), and aj = (aj1, a

j
2) for each index

j. Let

x := Φ(g
Can(A)
i (a1, . . . , an)) = (0, ψ(g̃A1

i (a11, . . . , a
n
1 )))

and

y := g
Can(B)
i (Φ(a1), . . . ,Φ(an))

= g
Can(B)
i ((φ(a11), ψ(a12)), . . . , (φ(an1 ), ψ(an2 )))

= (0, g̃B1
i (φ(a11), . . . φ(an1 ))) .

The fact that x = y for all a1, . . . , a1 ∈ Can(A) follows from the definition
of isoclinism. Since it is true for all i ∈ I, we have proved that Can(A) and
Can(B) are isomorphic (as distributive algebras).

Part (c) follows immediately from (b) and the fact that Can(A) is isomor-
phic to Can(Can(A)), and (d) follows immediately from the fact that π(A) =
Ann(A). Lastly, (e) follows from the fact that non-nilpotent (I, ρ)-algebras A
exist for any type (I, ρ) with nonempty reduced index set I0. For instance,
we could take (A,+) to be any nontrivial abelian group, and gAi (x) = x1 for
x ∈ A×ρ(i) and all i ∈ I0. �

Remark 4.19. Proposition 4.12 tells us that a pair of distributive algebras A
and B are isomorphic if AId and BId are isoclinic. However if AId is isoclinic
to a general (IId, ρId)-algebra A′, then AId and A′ do not even have to be of
the same cardinality. For instance, if A is an (I, ρ)-algebra with 1 < |A| < ∞,
then AId is isoclinic to A′ := Can(AId) even though AId is non-nilpotent, A′ is
nilpotent, and |A′| = |A|2 > |A| = |AId|.
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The next couple of corollaries of Theorem 4.18 give links between properties
of canonical relatives of a distributive algebra A and properties of A/Ann(A).
The first corollary is related to [3, Corollary 3.11] for Z-isoclinism, and [2,
Proposition 2.10] for group isoclinism.

Corollary 4.20. Suppose I is a finite index set. An (I, ρ)-algebra A is isoclinic
to a finite algebra if and only if A/Ann(A) is finite.

Proof. IfA is isoclinic to a finite (I, ρ)-algebraB, thenA/Ann(A) ∼= B/Ann(B),
so certainly A/Ann(A) is finite. Conversely, suppose A/Ann(A) is finite. It
follows by distributivity that for fixed i ∈ I, the product gAi (x) depends only
on the cosets xj + Ann(A), j := 1, . . . , ρ(i). Thus A contains only finitely
many product elements, and each product is of finite order in (A,+); in fact
its order divides |A/Ann(A)|. Since π(A) is additively generated by products,
this is also of finite size. Every canonical-form algebra isoclinic to A has order
|A/Ann(A)| · |π(A)|, so we are done. �

Corollary 4.21. A distributive algebra A satisfies m(A/Ann(A)) = 0 for a
given integer m if and only if mCan(A) = 0.

Proof. Suppose an (I, ρ)-algebra A satisfies m(A/Ann(A)) = 0. Thus ma ∈
Ann(A) for all a ∈ A and so for all i ∈ I0, gAi (x) = 0 if xj ∈ mA for at least
one index 1 ≤ j ≤ n := ρ(i). By distributivity, this means that mgAi (y) = 0 for
all y ∈ A×n. Since i ∈ I0 is arbitrary, we deduce that mπ(A) = 0. But Can(A)
is isomorphic as an additive group to (A/Ann(A))⊕π(A) so mCan(A) = 0, as
required. The converse direction follows immediately. �

4.22. Comparisons involving isologism or isoclinism. Finally in this sec-
tion, we compare isologism and isoclinism with some other equivalence relations
on classes of PN rings. First, isomorphism of PN rings is a special case of isolo-
gism: it corresponds to taking V = V ′0, as mentioned in Remark 4.14. Consider
next the three types of isoclinism introduced in [3, Section 3]. Z-isoclinism,
defined in [3] for rings, is simply Vc-isologism. G-isoclinism, defined in [3] for
PN rings, is Vn,pn-isologism. (Although Vn,pn = Vn, we prefer to write Vn,pn here
to indicate that this is an isologism on a PN variety.)

Lastly, R-isoclinism was introduced in [3] to contrast with Z- and G-isoclinism,
and it generalizes the types of isoclinism defined by Kruse and Price3 [14] and
Moneyhun [15]. R-isoclinism is related to Vn,pn-isologism but it is not the same:
although both could be described as types of “isologism” with respect to the
same variety, R-isoclinism is not an “isologism” in our sense of the word be-
cause the isoclinism maps φ, ψ are assumed to be ring isomorphisms rather
than additive group isomorphisms. This makes R-isoclinism a finer equivalence
relation than Vn,pn-isologism. However using Proposition 4.12, we can recover
R-isoclinism from our notion of isoclinism by using quotient spaces and the Id
functor: a pair of PN rings R and S are R-isoclinic if and only if R/Ann(R)
and S/Ann(S) are isoclinic as [1, 2]-algebras, where the attached operations are
gT1 (x) := x, and gT2 (x, y) := xy for T = R/Ann(R) and for T = S/Ann(S).

Nilpotency is not an isoclinism invariant (Theorem 4.18(e)), contrasting not
only with the situation for groups, but also with the situation for R-isoclinism
for rings (see [14, 3.1.5]). The fact that nilpotency is preserved by R-isoclinism

3Kruse and Price talk only of “families” and do not use the term “isoclinism”.
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but not by algebra isoclinism is a consequence of the fact that more of the
algebraic structure is preserved by R-isoclinism than by algebra isoclinism.

One might therefore wonder why we do not assume that φ and ψ in our defi-
nition of isoclinism are algebra isomorphisms rather than group isomorphisms.
One answer is that R-isoclinism is such a fine notion of equivalence relation
that in some contexts it is little different from isomorphism: indeed two finite
dimensional classical algebras over the same field are isoclinic if and only if one
is isomorphic to the direct sum of the other one and a null algebra [14, Corollary
3.2.7]. Because less structure is preserved by algebra isoclinism, nothing like
this is true there; see Propositions 4.6 and 4.7. Our notion is useful because it
is both weak enough to allow every algebra to be isoclinic to an algebra of a
rather simple canonical form, and strong enough that many interesting proba-
bilistic functions are invariant with respect to suitable isoclinisms (as we see in
the next section).

Our notion of canonical form (Definition 4.16) is close in spirit to the def-
inition of Z-canonical form for rings in [3, Section 3], without being a true
generalization of it: the earlier notion had an added condition defined in terms
of the original ring multiplication, so it is a hybrid notion involving both the
particular distributive algebra structure (in this case, a Lie ring) and the un-
derlying ring structure. For that reason, Z-canonical form is not unique up to
ring isomorphism, whereas our notion of canonical form notion is unique up to
a distributive algebra isomorphism.

5. Applications

In this section we investigate various probabilistic and related functions on
classes of finite cardinality distributive algebras A of a given type, and show
that these functions are isoclinism invariants in this class, or some related class,
of distributive algebras. Thus a fortiori they are also isomorphism invariants,
but it is the isoclinism invariance property that will be more useful to us and
will allow us to prove results such as those in the introduction.

Our initial task is to state a simple lemma that provides a useful isoclinism
invariant. Using this and other isoclinism invariants, we then construct our
probability functions. First though we need some notation.

Throughout this section A is a finite cardinality (I, ρ)-algebra, and i ∈ I is
a fixed index satisfying n := ρ(i) ≥ 2, unless otherwise qualified. As before we
write x = (x1, . . . , xn); x may be an element of A×n or (A/Ann(A))×n, depend-
ing on the situation. Let g̃Ai : (A/Ann(A))×n → π(A) be as in Remark 3.10.
Whenever φ : A/Ann(A)→ B/Ann(B), we define

φ : (A/Ann(A))×n → (B/Ann(B))×n

by φ(x) = y, where y = (y1, . . . , yn), and φ(xj) = yj, 1 ≤ j ≤ n. We similarly
define the vector version

ψ : (π(A))×n → (π(B))×n

of ψ : π(A) → π(B). With this notation, the isoclinism condition is simply
ψ ◦ g̃Ai = g̃Bi ◦ φ.
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5.1. Invariant probability functions. Lemma 3.2 of [3] says that one partic-
ular probability function (the commuting probability for rings) is an isoclinism
invariant for one particular notion of isoclinism (Z-isoclinism). We now gener-
alize that result.

Whenever A is a finite abelian group and f : An → A is a map for some
n ∈ N, we define

(5.1) Pr(A; f, n) :=
|{a ∈ A×n : f(a) = 0}|

|A|n
.

Lemma 5.2. Suppose (φ, ψ) is an isoclinism from one finite (I, ρ)-algebra A to
another B. Then Pr(A; gAi , n) = Pr(B; gBi , n) for all i ∈ I such that n := ρ(i) >
0.

Proof. We can compute Pr(A; gAi , n) by counting only over cosets of Ann(A):

Pr(A; gAi , n) :=
|{x ∈ (A/Ann(A))n : g̃Ai (x) = 0}|

|A/Ann(A)|n
.

But g̃Ai (x) = 0 if and only if ψ(g̃Ai (x)) = g̃Bi (φ(x)) = 0. Since φ : (A/Ann(A))n →
(B/Ann(B))n is an isomorphism, the lemma follows. �

The simple argument in the above lemma can be generalized. In particular,
if replace gRi by fR : R×m → R for R = A,B, with

(5.2) fR(x1, . . . , xm) := gRi

(
m∑
j=1

a1jxj, . . . ,
m∑
j=1

anjxj

)
,

and we analogously define f̃R : (R/Ann(R))×m → R, then we can prove the
following lemma.

Lemma 5.3. Suppose (φ, ψ) is an isoclinism from one finite (I, ρ)-algebra A to
another B, and suppose fA, fB are defined as in (5.2), with i ∈ I, n := ρ(i) > 0,
and m ∈ N. Then Pr(A; fA,m) = Pr(B; fB,m).

Proof. As before, for R = A and R = B, we have
(5.3)

Pr(R; fR, n) :=
|{(x1, . . . , xm) ∈ (R/Ann(R))m : f̃R(x1, . . . , xm) = 0}|

|R/Ann(R)|m
.

Now ψ is injective, so f̃A(x1, . . . , xm) = 0 if and only if ψ(f̃A(x1, . . . , xm)) = 0.
Moreover

ψ(f̃A(x1, . . . , xm)) = ψ

(
g̃Ai

(
m∑
j=1

a1jxj, . . . ,
m∑
j=1

anjxj

))

= g̃Bi

(
φ

(
m∑
j=1

a1jxj

)
, . . . , φ

(
m∑
j=1

anjxj

))

= g̃Bi

(
m∑
j=1

a1jφ(xj), . . . ,
m∑
j=1

anjφ(xj)

)
= f̃B(φ(x1), . . . , φ(xm)) .
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Thus f̃A(x1, . . . , xm) = 0 if and only if f̃B(φ(x1), . . . , φ(xm)) = 0. Since φ :
A/Ann(A) → B/Ann(B) is an isomorphism, the lemma now follows from
(5.3). �

The probability functions associated with isologism with respect to the vari-
eties Vn, Vc, and Vac are covered by Lemma 5.2, but let us consider two other
examples that might also be of interest.

Example 5.4. The condition 2x ∈ Z(R) comes up in many various commu-
tativity results for rings: for instance if R satisfies an identity of the form
xn − x ∈ Z(R) for some even integer n, it is readily deduced that 2x ∈ Z(R).
Consequently, one might be interested in the associated probability function.
Given a ring R, we associate a [2]-algebra A by attaching the operation

gA1 (x, y, z) := 2xy − 2yx .

Then Pr(A; gA1 , 2) is an isoclinism invariant for this associated [2]-algebra. Equiv-
alently the probability that a general element in a ring R commutes with twice
another element is an isologism invariant for the associative variety with the
single law f1(X, Y ) = 2XY − 2Y X.

Definition 5.5. An element x of a PN ring R is dinilpotent if x2 = 0.

Example 5.6. A PN ring R is just a [2]-algebra. Taking fR(x) := x2, it follows
that Pr(A; fR, 2) is an isoclinism invariant of [2]-algebras, i.e. the proportion of
dinilpotent elements in R is an isologism invariant for the variety Vn.

Example 5.7. We can combine invariant probability functions to get other in-
variant probability functions. For instance, if we were interested in investigating
the spectrum of values of Pr2(R) := Prc(R) Prac(R) as R ranges over all PN
rings R, it might be useful to use the fact that Pr2(·) is an isologism invariant
for the variety with laws f1(X, Y ) = XY − Y X and f2(X, Y ) = XY + Y X.

5.8. Spectra and isologism. Here we prove the results in the introduction
and other related results involving spectra. We first prove the following stronger
version of Theorem 1.1; note that, as a special case of Theorem 3.17, a PN ring
R is said to be nilpotent of exponent at most n if Rn+1 = 0. Also MLn(Z) is as
defined in §3.19.

Theorem 5.9. Let C0, C, and Cpn be the classes of all finite nilpotent rings of
exponent at most 2, all finite rings, and all finite PN rings, respectively. Then
Sf (C1) = Sf (C) for all f ∈ ML2(Z), and all classes C1 such that C0 ⊆ C1 ⊆ Cpn.

Proof. It is trivial that Sf (C0) ⊆ Sf (Cpn), so it suffices to show the converse
inequality. To do this, we show that every PN ring R is V-isologic to a ring S
of exponent at most 2 with respect to some variety V such that V-isologism has
Prf as an invariant probability.

Let Vf be the PN variety whose single law is f , and let V (R) and V ∗(R) be
the associated verbal and marginal subgroups of R. It follows from Lemma 5.2
that Prf is a Vf -isologism invariant.

We define a new PN ring S as follows: (S,+) = R⊕V (R), and multiplication
is defined by (x1⊕x2)(y1⊕y2) = 0⊕x1y1 for x1, y1 ∈ R, x2, y2 ∈ V (R). Written
in terms of the direct sum decomposition of (S,+), it is readily verified that
V (S) = 0⊕V (R) and V ∗(S) = V ∗(R)⊕V (R). Thus S/V ∗(S) = (R/V ∗(R))⊕0.
An isologism from R to S is given by (φ, ψ), where φ is the natural identification
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of R/V ∗(R) with the first summand of S/V ∗(S), and ψ is the natural identi-
fication of V (R) with the second summand of V (S). Thus Prf (R) = Prf (S),
and it is clear that S is nilpotent of exponent at most 2 (and thus associative),
so we are done. �

Remark 5.10. The proof of Theorem 5.9 also works for the functions con-
sidered in Examples 5.4–5.7: the associated spectra for finite nilpotent rings
of exponent at most 2 each coincide with the corresponding spectrum for all
finite PN rings. In particular, the dinilpotent spectra for rings and for PN rings
coincides.

The dinilpotent condition x2 = 0 is not so different in form from the idempo-
tent condition x2 = x, but idempotent proportion is not an isoclinism invariant.
One might wonder if nevertheless the spectrum of possible idempotent propor-
tions for PN rings might equal that for all rings. Since finite PN rings are direct
sums of PN rings of prime power order, it suffices to consider the same question
for PN p-rings and p-rings, where p is a prime. For “large” proportions there is
no difference: the sets of possible idempotent proportions in the interval [1/p, 1]
for PN p-rings and for p-rings coincide ([4], [5]), and the sets of possible pro-
portions in the interval [2/p2, 1] for unital p-rings and unital PN p-rings also
coincide [6]. However when p is odd, there exists an idempotent proportion for
(nonunital) PN p-rings exceeding 2/p2 (and at least two such proportions for
p > 3) that is not an idempotent proportion for p-rings [7].

Proof of Theorem 1.2. Suppose R is a finite ring, and let V be the PN variety
with law f(X, Y ) = aXY +bY X. Let RV be the standard construction of an as-
sociated (I, ρ)-algebra, as in §4.22, so that RV is a PN ring, with multiplication
gRV (x, y) := fR(x, y). Let S := Can(RV) with a single multiplication gS. Like
RV , S is a PN ring but, because S is nilpotent of exponent at most 2, it is ac-
tually a ring. Additionally Pr(S; gS, 2) = Pr(RV ; gRV , 2). But by construction,
Pr(RV ; gRV , 2) = Prf (R), while Pr(S; gS, 2) = Prann(S), so we are done. �
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