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Abstract. For every metric space (X, d) and origin o ∈ X, we show that Io(x, y) ≤
2do(x, y), where Io(x, y) = d(x, y)/d(x, o)d(y, o) is the metric space inversion semimetric,
do is a metric subordinate to Io, and x, y ∈ X \ {o}. The constant 2 is best possible.

1. Introduction

Inversion (or reflection) about the unit sphere is a bijection on Rn\{0}, so we can pull back
Euclidean distance to get a new distance on Rn \ {0}: I0(x, y) = |x− y|/|x| |y|. Inversion
has been generalized in [3] to the setting of a metric space (X, d) containing at least two
points: for fixed o ∈ X, define

(1.1) Io(x, y) =
d(x, y)

d(x, o)d(y, o)
, x, y ∈ Xo ,

where Xo := X \{o}. Then Io is a semimetric on Xo, but not in general a metric. However
we can define a related function do : Xo ×Xo → [0,∞) subordinate to Io, and show that
do is a metric that is bilipschitz equivalent to Io. Specifically, it is shown in [3, Lemma 3.2]
that

(1.2)
1

4
Io(x, y) ≤ do(x, y) ≤ Io(x, y) :=

d(x, y)

d(x, o)d(y, o)
.

Inversion has been used as a tool to characterize uniform domains in terms of Gromov
hyperbolicity and the quasiconformal structure of the Gromov boundary in [7, Theorem
9.1], thus extending a result for bounded Euclidean uniform domains [1, Theorem 1.11].

Many estimates in [3] depend on the above inequality, but few of the constants are sharp.
A natural first question related to sharpness is therefore to investigate the sharpness of the
first inequality in (1.2) for general metric spaces. Note that the second inequality is sharp
since do = Io whenever X is a CAT(0) space, as explained in [6] or [2]; see also [5] and [4]
for more on Ptolemaic spaces (i.e. spaces in which do = Io for all o).

In this paper, we investigate the first inequality in (1.2) and prove the following sharp
replacement.

Theorem 1.1. For every metric space (X, d) of cardinality at least 2, every o ∈ X, and
every x, y ∈ Xo, we have Io(x, y) ≤ Cdo(x, y) for C = 2. However this inequality fails for
certain choices of data o, x, y, whenever C < 2 and X is a non-Euclidean L∞ space.

Note that a non-Euclidean L∞ space is precisely an L∞ space of dimension at least 2.

After some preliminaries in Section 2, we investigate an easier variant of the problem for ℓp

and counting measure L∞ in Section 3, and then we prove the main theorem in Section 4.
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2. Notation and Preliminaries

Generalities

Throughout the remainder of the paper, (X, d) is a metric space of cardinality at least 2
(sometimes satisfying additional restrictions), and do, Io, Xo are as in the Introduction.

We denote by im(f) the image of any map f , and by s ∨ t the maximum of two numbers
s, t.

We denote the norm in any Lp space by ∥ · ∥p. As usual, 1/p is taken to mean zero when
p = ∞, and ℓpn is Lp for the n-point counting space. Everything said about Lp or ℓpn is true
for both real and complex versions of these spaces.

Consider the following well-known conditions defining a metric d : X ×X → R, where X
is a non-empty set:

(a) d is non-negative, and d is zero along the diagonal (i.e. d(x, x) = 0);
(b) d is nonzero off the diagonal (i.e. d(x, y) > 0 if x ̸= y);
(c) d is symmetric;
(d) d satisfies the triangle inequality.

A function d : X × X → R is a pseudometric on X if it satisfies (a), (c), and (d) above,
while it is a semimetric on X if it satisfies (a), (b), and (c).

The metric d0 and related constants

We first define a discrete path P and associated “lengths” d(P ) and Io(P ).

Definition 2.1. A discrete path P = (zi)
n
i=0 from x to y in Xo is a finite sequence

{z0, . . . , zn} ∈ Xo, satisfying z0 = x, and zn = y. For any such discrete path, we de-
fine the “lengths” d(P ) :=

∑n
i=1 d(zi−1, zi) and Io(P ) :=

∑n
i=1 Io(zi−1, zi).

Let us recall the definition of do from [3].

Definition 2.2. For x, y ∈ Xo, do(x, y) is the infimum of Io(P ) over all discrete paths
P = (zi)

n
i=0 from x to y in Xo.

The above definition involves the standard construction of a pseudometric from a semi-
metric: in fact it is clearly the largest pseudometric subordinate to the semimetric. The
first inequality in (1.2) ensures that d0 is a metric. If we wish to emphasize what space we
are working in, we write do,X(x, y) instead of do(x, y).

It is trivial that do,X(x, y) ≤ do,Y (x, y) whenever x, y ∈ X ⊂ Y but we do not always get
equality. For instance if we define the points o = (0, 0), x = (1, 0), y = (0, 1), and z = (1, 1)
in ℓ12, and take X = {o, x, y} and Y = X∪{z}, then it is trivial that do,X(x, y) = 2, whereas
do,Y (x, y) = do,Y (x, z) + do,Y (z, y) = 1/2 + 1/2 = 1. This example motivates the following

definition of a variant d̂o of do.

Definition 2.3. For x, y ∈ Xo, d̂o(x, y) is the infimum of the distances do,Y (x, y) over all
metric spaces (Y, dY ) containing (an isometric copy of) X.

In the previous example, do,X(x, y) = Io(x, y) = 2 but d̂o(x, y) ≤ 1. Using (1.2), it follows

easily that d̂o is also a metric on Xo satisfying d̂o ≥ Io/4.

By contrast with do(x, y), the semimetric quantity Io(x, y) depends only on d(x, y), d(x, o),
and d(y, o), so it is unchanged if we replace X by a space in which X is isometrically
embedded.
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It is clear that do and Io coincide infinitesimally, and that they have length element
ds(z)/(d(z, o))2 at z ∈ Xo, where ds denotes the d-length element. Thus the do-length
of a path γ in Xo is:

leno(γ) =

∫
γ

ds(z)

(d(z, o))2
.

We now define the main constant Cinv(X) that interests us in this paper, and related

constants cinv(X) and Ĉinv(X).

Definition 2.4. We denote by Cinv(X) the smallest constant C ≥ 0 such that Io(x, y) ≤
Cdo(x, y) for all o ∈ X, x, y ∈ Xo. We denote by cinv(X) the smallest constant C ≥ 0 such

that Io(x, y) ≤ C(Io(x, z) + Io(z, y)) for all o ∈ X, x, y, z ∈ Xo. We denote by Ĉinv(X) the

smallest constant C ≥ 0 such that Io(x, y) ≤ Cd̂o(x, y) for all o ∈ X, x, y ∈ Xo.

Let us now list a few basic facts about these constants, with justification for those facts
that are non-trivial.

Fact 2.5. 1 ≤ cinv(X) ≤ Cinv(X) ≤ Ĉinv(X).

Fact 2.6. It can occur that Cinv(X) < Ĉinv(X) (e.g. the example before Definition 2.3) or
that cinv(X) < Cinv(X) (e.g. Example 2.10 below).

Fact 2.7. If X is isometrically embedded in Y , then C(X) ≤ C(Y ), where C(·) denotes
Cinv(·), cinv(·), or Ĉinv(·).

Lemma 3.2 in [3] says that Ĉinv(X) ≤ 4. Our Theorem 1.1 says that Cinv(X) ≤ 2 and,

since this is true for all spaces, we also have Ĉinv(X) ≤ 2. Theorem 1.1 also says that
Cinv(X) = 2 if X is a non-Euclidean L∞ space. In fact, we will see that cinv(X) = 2 in
every non-Euclidean L∞ space.

Elementary estimates and examples

If for some o ∈ X, x, y, z ∈ Xo, we have d(x, z) = td(x, y), d(z, y) = (1 − t)d(x, y), and
d(z, o) = (1− t)d(x, o) + td(y, o), then

(2.1)

Io(x, z) + Io(z, y) = d(x, y)

(
t

d(x, o)d(z, o)
+

1− t

d(z, o)d(y, o)

)
= d(x, y)

(
td(y, o) + (1− t)d(x, o)

d(x, o)d(z, o)d(y, o)

)
= Io(x, y) .

Replacing the last equation above by an inequality, we immediately deduce the remaining
parts of the following useful observation.

Observation 2.8. Suppose o ∈ X, x, y, z ∈ Xo, with d(x, z) = td(x, y) and d(z, y) =
(1 − t)d(x, y) for some 0 < t < 1. Then Io(x, z) + Io(z, y) is greater than, equal to,
or less than Io(x, y) depending on whether d(z, o) is less than, equal to, or greater than
(1− t)d(x, o) + td(y, o), respectively.

Applying this observation to points on a path, we get the following result.

Observation 2.9. Suppose γ : [0, L] → Xo is a d-geodesic segment from x to y parametrized
by d-arclength, x, y ∈ Xo. Then leno(γ) ≤ Io(x, y) if t 7→ d(γ(t)) is a concave function,
while leno(γ) ≥ Io(x, y) if t 7→ d(γ(t)) is a convex function.
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With the above observations in hand, it is not hard to give an example of a space X such
that cinv(X) < Cinv(X).

Example 2.10. Let X be the subset of ℓ∞2 given by X = {o, x, y, z1, z2} where o = (0, 0),
x = (1, 1), y = (−1, 1), z1 = (1/2, 3/2), z2 = (−1/2, 3/2). Then Io(x, y) = 2/(1)2 = 2,
while

Io(x, zi) + Io(zi, y) =
1/2

(1)(3/2)
+

3/2

(3/2)(1)
=

4

3
,

for i = 1, 2. Thus cinv(X) ≤ 2/(4/3) = 3/2. In fact cinv(X) = 3/2. To see this, we
need to do a similar calculation for all other pairs of distinct points u, v ∈ Xo: in fact,
by symmetry it suffices to consider the pairs {x, z1}, {x, z2}, and {z1, z2}. In most cases,
adding an intermediate point w ∈ Xo gives an Io sum at least as large as Io(u, v), and so
do(u, v) = Io(u, v). The only exception is that Io(x, z2) = 1, while Io(x, z1) + Io(z1, z2) =
1/3 + 4/9 = 7/9, but this value is large enough to allow us to deduce that cinv(X) = 3/2.

However Cinv(X) ≥ 2/(10/9) = 9/5 > cinv(X) because

Io(x, z1) + Io(z1, z2) + Io(z2, y) = 2
1/2

(1)(3/2)
+

1

(3/2)2
=

10

9
.

In the above example, one intermediate point was insufficient to obtain do(x, y). With a
little extra effort, we now show that no finite collection of points may be sufficient to obtain
do(x, y).

Example 2.11. Let X consist of the interval Xo := [0, 1] ⊂ R together with a single extra
point o. Let

d(s, t) :=


|s− t| , s, t ∈ [0, 1] ,

2− t2/2 , s = o, t ∈ [0, 1] ,

0 , s = t = o .

A straightforward case analysis shows that X is a metric: the only case that is not com-
pletely trivial is the inequality d(o, t) ≤ d(o, s) + d(s, t) for s, t ∈ [0, 1], which can be
rewritten as

s2 ≤ t2 + 2|s− t| , 0 ≤ s, t ≤ 1 ,

and this is easily established.

The key features of Xo are that it consists entirely of a d-geodesic segment [0, 1], and that
the distance function d(o, ·) is strictly concave on [0, 1]. Thus by Observation 2.8, adding
an extra intermediate point to a discrete path (zi) from x := 0 to y := 1 always decreases
the corresponding Io-sum, and so do(x, y) is strictly smaller than Io(P ) for any discrete
path P from x to y. It readily follows that [0, 1] is also a do-geodesic segment and

do(x, y) =

∫ 1

0

dt

(2− t2/2)2
=

1

6
+

1

4
tanh−1(1/2) ≈ 0.304 .

By comparison, note that Io(x, y) = 1/(2(3/2)) = 1/3.

3. The constant cinv(ℓ
p), 1 ≤ p ≤ ∞

In this section, we prove the following rather easy but crucial lemma.

Lemma 3.1. If X = L∞(S), where S is a counting measure space with at least two points,
then cinv(X) = 2.
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The first step in proving Lemma 3.1 is to compute cinv(ℓ
∞
2 ). Since essentially the same

method yields a formula for cinv(ℓ
p
2), 1 ≤ p ≤ ∞, we compute all of these constants.

Proposition 3.2. For 1 ≤ p ≤ ∞, cinv(ℓ
p
2) equals cp := 2|1−2/p|.

Proof. We first show that Io(x, y) ≤ cp(Io(x, z) + Io(z, y)) for all x, y, z ̸= o. Multiplying
this inequality across by ∥x − o∥p ∥y − o∥p ∥z − o∥p, the desired inequality is seen to be
equivalent to:

∥x− y∥p ∥z − o∥p ≤ cp∥x− z∥p ∥y − o∥p + ∥y − z∥p ∥x− o∥p .
Since inversion gives a metric on the deleted Euclidean plane, this inequality holds when
p = 2 (and C2 = 1). Using this ℓ2 inequality and the following well-known estimates (which
can be deduced from the inequalities of Holder and Minkowski):

∥ · ∥2 ≤ ∥ · ∥p ≤ 21/p−1/2 ∥ · ∥2 , 1 ≤ p ≤ 2 ,

21/p−1/2 ∥ · ∥2 ≤ ∥ · ∥p ≤ ∥ · ∥2 , 2 ≤ p ≤ ∞ ,

it is straightforward to deduce the result. For instance when p ≥ 2,

∥x− y∥p ∥o− z∥p ≤ ∥x− y∥2 ∥o− z∥2
≤ |x− z∥2 ∥y − o∥2 + ∥y − z∥2 ∥x− o∥2
≤ 21−2/p (∥x− z∥p ∥y − o∥p + ∥y − z∥p ∥x− o∥p) .

where we used the above estimates repeatedly in both inequalities comparing ℓp and ℓ2

quantities.

To finish the proof, we show that

∥x− y∥p ∥o− z∥p = cp (∥x− z∥p ∥y − o∥p + ∥y − z∥p ∥x− o∥p) .
for some choice of distinct points x, y, z, o ∈ ℓp2. For 1 ≤ p ≤ 2, take o = (0, 0), x = (1, 0),
y = (0, 1), and z = (1, 1) so that

∥x− y∥p · ∥o− z∥p = 21/p · 21/p = 22/p

while

∥x− z∥p · ∥y − o∥p + ∥y − z∥p · ∥x− o∥p = 1 · 1 + 1 · 1 = 2 ,

giving the required equality. For the case p ≥ 2, we instead use the points o = (0, 0),
x = (−1, 1), y = (1, 1), and z = (0, 2). �

For general n, we get the following estimates.

Proposition 3.3. For 1 ≤ p ≤ ∞ and n ≥ 2, we have 2|1−2/p| ≤ cinv(ℓ
p
n) ≤ n|1−2/p| and

Cinv(ℓ
p
n) ≤ n|3/2−3/p|.

Proof. The proof of the upper bound in Proposition 3.2 is easily adjusted to give a proof of
the upper bound for cinv(ℓ

p
n): the only difference is that constants of comparison between ℓp

and ℓ2 now involve the factor n1/2−1/p rather than 21/2−1/p. The upper bound for Cinv(ℓ
p
n)

is similar, except that we need to compare ℓp norms with ℓ2 norms for three vectors in each
term rather than just two. Lastly, the lower bound for cinv(ℓ

p
n) (and so for Cinv(ℓ

p
n)) follows

immediately from Proposition 3.2 since ℓp2 is isometrically embedded in ℓpn. �

The estimate cinv(ℓ
∞
n ) ≤ n in Proposition 3.3 is not sharp when n > 2. The sharp result is

of course Lemma 3.1, which we now prove.
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Proof of Lemma 3.1. Since ℓ∞2 is isometrically embedded in X, we deduce from Proposi-
tion 3.2 that cinv(X) ≥ 2. Conversely we need to show that

(3.1) ∥x− y∥∞∥o− z∥∞ ≤ 2 (∥x− z∥∞∥y − o∥∞ + ∥y − z∥∞∥x− o∥∞) ,

for all o ∈ X and x, y, z ∈ Xo.

Let ϵ > 0 be arbitrary, and let us choose a, b ∈ S so that (1 + ϵ)|x(a) − y(a)| ≥ ∥x − y∥
and (1 + ϵ)|o(b)− z(b)| ≥ ∥o− z∥. Define the functions x′, y′, z′, o′ ∈ X, to have the same
values as x, y, z, o, respectively, at the two points a and b, and to equal 0 elsewhere. Thus
these new functions lie in an isometric copy of the L∞ plane and so using Proposition 3.3
we get that

(1 + ϵ)−2∥x− y∥∞∥o− z∥∞ ≤ ∥x′ − y′∥∞∥o′ − z′∥∞
≤ 2 (∥x′ − z′∥∞∥y′ − o′∥∞ + ∥y′ − z′∥∞∥x′ − o′∥∞)

≤ (∥x− z∥∞∥y − o∥∞ + ∥y − z∥∞∥x− o∥∞) .

Since ϵ > 0 is arbitrary, the result follows. �
Remark 3.4. The assumption in Lemma 3.1 that the measure on S is counting measure
could be eliminated at the expense of a slightly more technical proof. However the given
version is sufficient for the proof of Theorem 1.1, which implies such an improved version
of Lemma 3.1 as a special case.

Remark 3.5. We do have an explicit formula for cinv(ℓ
p
n), n > 2, or for Cinv(ℓ

p
n), n > 1. The

only cases in which we can give explicit values are when p ∈ {1,∞}, in which cases both
constants equal 2, as follows rather easily from Proposition 3.2, the isometric embedding
of ℓp2 in ℓpn, and Theorem 1.1.

4. The constants Cinv(X) and cinv(X) for general metric spaces

Before investigating Cinv(X) and cinv(X) for general spaces, we first need some notation.
We denote by [x, y]o any d-geodesic segment from x to y in Xo, meaning a path from x to
y whose d-length equals d(x, y). We call [x, y]o a doubly geodesic segment if its do-length
equals do(x, y).

We write G(x, y) = (d(x, y)− |d(x, o)− d(y, o)|)/2 whenever x, y ∈ Xo. Thus G(u, v) ≥ 0,
and G(u, v) is just the Gromov product of o and whichever of x, y is further from o, with
the third point being the base for the Gromov product. Trivially G(·, ·) is non-negative
and symmetric.

We have the following useful lemma that applies when G(x, y) = 0.

Lemma 4.1. Suppose that for some x, y ∈ Xo, there exists a d-geodesic segment [x, y]o
and G(x, y) = 0. Then do(x, y) = Io(x, y), and [x, y]o is a doubly geodesic segment.

Proof. Without loss of generality, we assume that d(x, o) ≤ d(y, o). Note that G(x, y) = 0 is
just another way of writing d(y, o) = d(o, x) + d(x, y). It follows that there is an isometric
embedding R from [x, y]o ∪ {o} to the Euclidean half-line [0,∞) with R(o) = 0. Since
the inversion semimetric Io for o = 0 is a geodesic metric on (0,∞), we deduce that
leno([x, y]o) = Io(x, y).

Fixing an arbitrary pair x, y ∈ Xo, it remains to prove that [x, y]o is a do-geodesic. For this
it suffices to show that if z ∈ Xo \ {x, y}, then Sx := Io(x, z) + Io(z, y) is at least as large
as Io(x, y). Writing Sz as an expression involving d-distances, we see that there are three
quantities that vary as z varies: d(x, z), d(z, y), and d(z, o). Furthermore Sz is decreased
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whenever we decrease either of the first two of these quantities or increase the third, if the
others are kept fixed.

Consider first the case where d(z, o) < d(x, o). Since d(x, x) < d(z, x) and d(x, y) =
d(y, o) − d(x, o) < d(z, y), it is clear that Io(x, y) = Sx < Sz. Consider next the case
d(x, o) ≤ d(z, o) ≤ d(y, o), and let w ∈ [x, y]o be such that d(w, o) = d(z, o). By the triangle
inequality we see that d(x,w) = d(w, o) − d(x, o) ≤ d(x, z), d(w, y) = d(y, o) − d(w, o) ≤
d(z, y), and d(x,w) + d(w, y) = d(x, y) ≤ d(x,w) + d(w, y), so Io(x, y) = Sw ≤ Sz.

Finally, suppose d(z, o) > d(y, o). We write dx := d(x, o), dy := d(y, o), dz := d(z, o),
α = d(x, z), β = d(z, y), δ := d(x, y) = dy − dx, γ := (α + β − δ)/2 > 0. Then dz ≤
min(dx + α, dy + β). Fixing γ, the way to maximize the upper bound on dz is to choose
α, β so that dx + α = dy + β = dy + γ. Thus α = γ + δ and β = γ, and so

Sz =
γ + δ

dx(dy + γ)
+

γ

dy(dy + γ)
=

(γ + δ)dy + γdx
dxdy(dy + γ)

=
δ(dy + γ) + 2γdx
dxdy(dy + γ)

>
δ

dxdy
= Io(x, y) ,

as required. �

We are now ready to state a theorem that implies the first statement of Theorem 1.1.
Note that the second statement in Theorem 1.1 already follows from Lemma 3.1 since all
non-Euclidean L∞ spaces contain an isometric copy of ℓ∞2 .

Theorem 4.2. If (X, d) is a metric space of cardinality at least 2, then Ĉinv(X) ≤ 2.

Proof. We will prove that Cinv(X) ≤ 2 for all bounded spaces (X, d). This readily implies

the same inequality for all metric spaces, and hence that Ĉinv(X) ≤ 2, as required.

Since (X, d) is a bounded metric space, we can define an isometric embedding I of X into
Y := L∞(X,µ), where µ is counting measure, by letting I(x) := ix, where ix(u) = d(x, u),
u ∈ X. By Fact 2.7, Cinv(X) = Cinv(I(X)) ≤ Cinv(Y ), so it suffices to prove the result
when X = L∞(S) for some counting measure space S. We assume that X has this form
from now on.

By translation invariance of L∞, we may assume that o is the origin 0. We need to prove
that I0(x, y) ≤ 2I0(P ) for every discrete path P from x to y in X0. Certainly this holds
if we prove the same inequality for every discrete path P from x to y in A0, where (A, d)
is some augmented metric space that contains (an isometric copy of) (X, d), and we will
pass to such a superspace without further comment during the proof.

We split the rest of the proof into parts for clarity. In Part 1, we reduce to considering a
class of nice discrete paths. In Part 2, we show that any such nice discrete path can be
replaced by a (continuous) path, and hence by a discrete path with only three points. The
result then follows from Lemma 3.1.

Part 1: Reduction to a nicer discrete path Q

We reduce the task to considering only discrete paths P = (zi)
n
i=1 such that G(xi−1, xi) = 0

for each 1 ≤ i ≤ n. The idea is to insert extra points into P to get a refinement Q for
which this is true, and such that I0(Q) ≤ I0(P ) and d(Q) = d(P ).

This is often, but not always, possible for points in X = L∞(S). However we will show
that it is true in general if we make use of a suitable isometric embedding J of X into an
augmented L∞ space A, and then refine (the isometric copy of) J(P ) in A.
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It suffices to take A := L∞(S ′), where S ′ = S ∪ {s}, s /∈ S, and counting measure is again
attached to S ′; we also denote the metric in A by d. We define J : X → A, Ju = u′,
where u′(a) = u(a), a ∈ S, and u′(s) = d(u, 0) = ∥u∥∞. It is clear that J is an isometric
embedding.

Given a discrete path P from x to y in X0, we say that Q is a refinement of P in A0 if Q is a
discrete path in A0 from x′ to y′ obtained by inserting zero or more additional intermediate
points between elements in the discrete path P ′ identified with P under J . We claim that
every discrete path in X0 from x to y has a refinement in A0 with the properties that
d(Q) = d(P ), I0(Q) ≤ I0(P ), and G(zi−1, zi) = 0 for every pair of adjacent points in Q.

To prove our claim, it suffices to show that if u, v ∈ X0 with G(u, v) > 0, then there
exists w′ ∈ A0 with d(u, v) = d(u′, w′) + d(w′, z′), I0(u, v) > I0(u

′, w′) + I0(w
′, v′) and

G(u′, w′) = G(w′, v′) = 0. Assuming without loss of generality that d(u, o) ≤ d(v, o), we
will prove that it suffices to define w′ ∈ A by the equations

w′(a) = v′(a) +G(u, v) sgn(u′(a)− v′(a)) , a ∈ S ,

w′(s) = v′(s) +G(u, v) ,

where sgn : R → {−1, 0, 1} is the usual sign function on the real line.

If a ∈ S, then |w′(a) − v′(a)| equals either 0 or G(u, v), depending on whether or not
v(a) = u(a). Since |w′(s)− v′(s)| = G(u, v), we see that d(w′, v′) = G(u, v). Also

|v(a)− u(a)| −G(u, v) ≤ |w′(a)− u′(a)| ≤ d(u, v)−G(u, v) , a ∈ S .

Note that the above lower bound is obvious, while the obvious upper bound is

max(d(u, v)−G(u, v), G(u, v)) ,

which equals d(u, v)−G(u, v), as is clear from the definition of G. Since also

|w′(s)− u′(s)| = d(v, 0) +G(u, v)− d(u, 0) = d(u, v)−G(u, v) ,

we deduce that d(u′, w′) = d(u, v)−G(u, v). Moreover, since d(w′, 0′) = d(v, 0) +G(u, v),
it follows that

2G(u′, w′) = d(u′, w′) + d(u′, 0)− d(w′, 0)

= (d(u, v)−G(u, v)) + d(u, 0)− (d(v, 0) +G(u, v)) = 0 ,

2G(w′, v′) = d(w′, v′) + d(v′, 0)− d(w′, 0) = G(u, v) + d(v, 0)− (d(v, 0) +G(u, v)) = 0 ,

and d(u′, w′)+ d(w′, v′) = d(u, v). Lastly, the fact that d(w′, 0) > d(v′, 0) ≥ d(u′, 0) implies
that I0(u, v) > I0(u

′, w′) + I0(w
′, v′) by Observation 2.8.

Part 2: Reduction to a 3-point discrete path (via a continuous path)

Fixing two points u′, v′ ∈ A0 satisfying G(u′, v′) = 0 and d(u′, 0) ≤ d(v′, 0), and writing
L := d(u′, v′), we let γ : [0, L] → A0 be the line segment path parametrized by arclength
from u′ to v′. Then d(γ(t), 0) = d(u′, 0) + t for 0 ≤ t ≤ L, and so by Lemma 4.1,
I0(u

′, v′) = len0(γ).

It follows that for the nicer discrete path Q constructed in Part 1, I0(Q) = len0(λ), where
λ is the (continuous) polygonal path from x′ to y′ in A0 obtained by “joining the dots”
in Q. Thus our task has now been reduced to proving that I0(x

′, y′) ≤ 2 len0(λ) for every
(continuous) path from x′ to y′. Without loss of generality, we assume that λ : [0,M ] → A0

is parametrized by arclength and that d(x′, 0) ≤ d(y′, 0), so that len0(λ) =
∫M

0
(D(t))−2 dt,

where D(t) = d(γ(t), 0).
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To minimize len0(λ) among all paths in A0 from x′ to y′ of length M , we need to maximize
D(t). The triangle inequality gives two constraints: D(t) ≤ d(x′, 0)+t andD(t) ≤ d(y′, 0)+
M − t. Of these two constraints, the former is stronger when 0 ≤ t ≤ M − GM , where
GM = (M − d(y′, 0) + d(x′, 0))/2 ≥ 0, and the latter is stronger when M −GM ≤ t ≤ M .

Let z ∈ A0 be defined by the equations

z′(a) = y′(a) +GM sgn(x′(a)− y′(a)) , a ∈ S

z′(s) = y′(s) +GM

If a ∈ S, then |z′(a)−y′(a)| equals either 0 orGM , depending on whether or not y(a) = x(a).
Since also |z′(s)− y′(s)| = GM , we see that d(z′, y′) = GM . Similarly

|y(a)− x(a)| −GM ≤ |z′(a)− x′(a)| ≤ d(x′, y′)−GM ≤ M −GM , a ∈ S ,

and
|z′(s)− x′(s)| = d(y′, 0′) +GM − d(x′, 0′) = M −GM ,

and we readily deduce that d(x′, z′) = M −GM . Moreover, since d(z′, 0′) = d(y′, 0′) +GM ,
it follows that

2G(x′, z′) = d(x′, z′) + d(x′, 0)− d(z′, 0) = (M −GM) + d(x′, 0)− (d(y′, 0) +GM) = 0 ,

2G(z′, y′) = d(z′, y′) + d(y′, 0)− d(z′, 0) = GM + d(y′, 0)− (d(y′, 0) +GM) = 0 ,

and d(x′, z′) + d(z′, y′) = d(x′, y′).

It follows that the path ν consisting of two line segments, one from x′ to z′ and the second
from z′ to y′, maximizes D(t) for all 0 ≤ t ≤ M and, again using Lemma 4.1, we see that
len0(γ) = I0(R), where R is the 3-point discrete path (x′, z′, y′). Thus we have reduced
the task to showing that I0(x

′, y′) ≤ 2(I0(x
′, z′) + I0(z

′, y′)), and this inequality is already
given by Lemma 3.1. �

We have shown that cinv(X) ≤ Cinv(X) ≤ Ĉinv(X) ≤ 2 for all metric spaces. We finish by
discussing conditions under which these constants equal 2.

Let x′, y′ ∈ Xo be as in the proof of Theorem 4.2, with d(x′, o) ≤ d(y′, o). We saw that the
infimum of I0(Q) among all discrete paths from x′ to y′ in A0 is the same as its infimum
over all those special discrete paths Q = (x′, z′, y′) where G(x, z′) = G(z′, y′) = 0 and
d(z′, 0) = d(y′, 0) + GM , where GM = (M − d(y′, 0) + d(x′, 0))/2 and M ≥ d(x, y). It
readily follows from Observation 2.9 that

I0(x
′, z′) = len0([x

′, z′]) =

∫ d(y′,0)+GM

d(x′,0)

t−2dt ,

I0(z
′, y′) = len0([z

′, y′]) =

∫ d(y′,0)+GM

d(y′,0)

t−2dt .

Thus for fixed x′, y′, I0(Q) is minimized uniquely by minimizing GM . Taking M = d(x′, y′),
GM becomes G(x′, y′).

Writing dx := d(x′, 0), dy := d(y′, 0), δ := d(x′, y′), and γ := G(x′, y′) = (δ − dy + dx)/2,
for this minimizing Q, we see that

I0(Q) =
δ − γ

dx(dy + γ)
+

γ

(dy + γ)dy

=
δ(dx + dy) + (dy − dx)

2

dxdy(δ + dx + dy)
.
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Since a general metric space can be isometrically embedded in L∞, and then isometrically
embedded in an L∞ space of one extra dimension as in the proof of Theorem 4.2, the above
calculations yield the following corollary of Theorem 4.2.

Corollary 4.3. If (X, d) is a metric space of cardinality at least 2, and o ∈ X, then

d̂o(x, y) =
δ(dx + dy) + (dy − dx)

2

dxdy(δ + dx + dy)
,

where dx = d(x, o), dy = d(y, o), and δ = d(x, y).

We know that d̂o(x, y)/Io(x, y) ≥ 1/2, and we now determine when equality holds in this
inequality. Assume without loss of generality that 0 < dx ≤ dy. Corollary 4.3 implies that

d̂o(x, y)

Io(x, y)
=

δ(dx + dy) + (dy − dx)
2

δ(δ + dx + dy)
=

b(a+ 1) + (1− a)2

b(b+ a+ 1)
,

where a = dx/dy and b = δ/dy are real numbers satisfying 0 < a ≤ 1 and 1−a ≤ b ≤ 1+a.
Thus the task of locating all points where the minimum is achieved is reduced to calculating
where this last real-valued expression equals 1/2 on the set

R = {(a, b) ∈ R2 | 0 < a ≤ 1, 1− a ≤ b ≤ 1 + a} .

By splitting

f(a, b) :=
b(a+ 1) + (1− a)2

b(b+ a+ 1)
=

a+ 1

b+ a+ 1
+

(1− a)2

b(b+ a+ 1)
,

we see that this expression is strictly decreasing in b. Thus f(a, b) is minimal for fixed a if
and only if b is maximal, i.e. b = 1 + a. Then

f(a, 1 + a) =
1

2
+

(1− a)2

2(1 + a)2
,

and it is clear that the unique minimum is achieved when a = 1.

Thus we conclude as before that Io(x, y) ≤ 2d̂o(x, y), but this time with some extra infor-
mation: we get equality if and only if x, y are such that d(x, y) = 2d(x, o) = 2d(y, o). In
view of the strictly increasing properties of f and the fact that f is continuous on

R′ = {(a, b) ∈ R2 | 1/2 ≤ a ≤ 1 , 1 ≤ b ≤ 1 + a} ,
we readily deduce the following result.

Theorem 4.4. If (X, d) is a metric space of cardinality at least 2, then Ĉinv(X) = 2 if and
only if for every ϵ > 0, there exists o ∈ X and x, y ∈ Xo such that d(x, y)/2d(x, o) > 1− ϵ
and d(x, y)/2d(y, o) > 1− ϵ.

Certainly ifX is a normed vector space, then taking y = 2o−x, we have d(x, y) = ∥x−y∥ =

2∥x− o∥ = 2∥y − o∥, so Ĉinv(X) = 2 in all such cases.

Clearly calculating Ĉinv(X) is often now quite easy. By contrast, calculating Cinv(X) is
typically much more difficult, but the above calculations do provide us with some insight.
In particular, it is clear that cinv(X) = Cinv(X) = 2 if for every ϵ > 0 there exists a set
of points o ∈ X, x, y, z ∈ Xo, such that the five numbers d(y, o)/d(x, o), d(x, y)/2d(x, o),
d(x, z)/d(x, o), d(z, y)/d(x, o), and d(z, o)/2d(x, o) all lie in the interval [1− ϵ, 1 + ϵ].

Simple examples of spaces satisfying cinv(X) = Cinv(X) = 2 include any L1 or L∞ space of
dimension more than 1, since such spaces include (isometric copies of) ℓ12 or ℓ

∞
2 , respectively,
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and we readily find such a configuration of points in those spaces, even for ϵ = 0: it suffices
to take the configurations of points given in the second half of Proposition 3.2.
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