
Finite rings with many idempotents

STEPHEN M. BUCKLEY AND DESMOND MACHALE

Abstract. Let PrI(R) be the proportion of idempotents in a ring R. We find
all values of PrI(R) ∈ [1/2, 1] when R is a finite ring or a 2-ring. Replacing
the class of rings by the larger class of possibly nonassociative rings does not
affect the sets of values of PrI(R) that occur, and neither does the restriction
to unital rings. We also discuss the types of rings that give rise to these values
of PrI(R).

1. Introduction

Given a finite possibly nonassociative (and possibly non-unital) ring R con-
taining exactly m idempotent elements, we define its idempotent proportion to
be PrI(R) := m/|R|. We also define the sets

I = {PrI(R) | R is a finite ring} ,
Ip = {PrI(R) | R is a p-ring} ,

where p ∈ N is a prime number, a p-ring means a ring of order pn for some
n ≥ 0, and rings are not assumed to be unital. Corresponding sets Ina and
Ip,na are defined using possibly nonassociative rings in place of rings, so trivially
I ⊂ Ina and Ip ⊂ Ip,na. In this paper we study these sets for p = 2. The sets Ip
and Ip,na for odd p are studied in [6].

Let us first recall a result of the second author [15, Theorem 4].

Theorem A. If R is a finite ring with PrI(R) > 3/4, then R is a Boolean ring.

In this paper, we extend this theorem by listing all possible values of PrI(R) ≥
1/2 when R is a finite ring, or a finite 2-ring. The values of PrI(R) ≥ 1/2 involve
the set A := {a(n) | 1 ≤ n ≤ ∞), where

a(n) :=

{
(2n−1 + 1)/2n, n ∈ N ,
1/2, n =∞ .

Our first main result concerns 2-rings.

Theorem 1.1.

(a) If PrI(R) > 1/2 for a possibly nonassociative 2-ring R, then R is a Z2-
algebra.

(b) I2 ∩ [1/2, 1] = I2,na ∩ [1/2, 1] = A.
(c) The equations in (b) remain valid if we restrict to unital rings.
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(d) Whether R is assumed to be a finite ring or just a finite possibly nonas-
sociative ring, we can find R of order 2N with PrI(R) = a(n) if and only
if N ≥ g(n), where

g(n) =


0, n = 1,

n, 1 < n <∞,
1, n =∞.

The proof of the corresponding result for odd p in [6] involves the consideration
of nonassociative rings even if we wish to handle only (associative) rings. The
proof for p = 2 is quite different and, if we restrict our conclusions to rings,
then nonassociative rings are not required in the proof. However we deal with all
possibly nonassociative rings for consistency of analysis with [6], and because the
results extend naturally to this setting without extra effort. It is also noteworthy
and perhaps a little surprising that we get no additional PrI(R) values when R
is not required to be associative.

Using the above result, we can deduce a result for all finite possibly nonasso-
ciative rings R satisfying PrI(R) > 1/2.

Theorem 1.2. I ∩ [1/2, 1] = Ina∩ [1/2, 1] = A∪{2/3}. Moreover if R is a finite
possibly nonassociative ring with PrI(R) > 1/2, then either

(a) PrI(R) = 2/3 and R is the direct sum of Z3 and a possibly nonassociative
Boolean algebra, or

(b) PrI(R) ∈ A and R is a possibly nonassociative Z2-algebra.

After some preliminaries in Section 2, we investigate Ina in Section 3 and prove
the above results. Finally in Section 4, we explore the class of rings R of order 2k,
k ≤ 4, that satisfy PrI(R) > 1/2. The lesson that we draw from this exploration
is that it would appear to be much harder to characterize all p-rings satisfying
the condition PrI(R) > 1/p when p = 2 than it was to do so for odd p in [6].

2. Preliminaries

We first list the basic terminology and notation used in this paper, other than
what was already given in the introduction. A ring is required to be associative,
but is not necessarily unital. A 2-ring is a ring of order 2n for some n ≥ 0. A
Z2-algebra means a ring R in which 2R = {0}. Each of these concepts will be pre-
fixed with the phrase possibly nonassociative whenever associativity is dropped
as an assumption.

An idempotent of a possibly nonassociative ring R is an element x satisfying
x2 = x. An idempotent basis of an algebra will simply mean a basis consisting
only of idempotents. A possibly nonassociative Boolean ring is a possibly nonas-
sociative ring in which all elements are idempotent. Boolean rings are well known,
but nonassociative Boolean rings also exist: see for instance Example 9 in Section
II.12 of [4]. The fact that 2x = 0 in a Boolean ring is well known; we note that
the same proof works in a nonassociative Boolean ring: −x = (−x)2 = x2 = x.
Zn is the ring of integers mod n, Z∗n is the group of units in Zn, and Zm

n is the
direct sum of m copies of Zn. The null algebra O2n is the Z2-algebra of order 2n

in which all products are zero. GF(2n) is the finite field of order 2n, n ∈ N.
Given a possibly nonassociative ring R, its opposite ring is Rop: (Rop,+) =

(R,+), and multiplication ◦ in Rop is related to multiplication in R (denoted by
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juxtaposition) via the identity x ◦ y = yx. (To avoid awkward terminology, we
use the simple term “opposite ring” even when R and Rop are non-associative.)
We say that R is self-opposite if it is isomorphic to its opposite ring.

Suppose R, S are possibly nonassociative rings and φ : R → S is an additive
group isomorphism. We call φ a Jordan isomorphism if it satisfies the identity
φ(xy + yx) = φ(x)φ(y) + φ(y)φ(x) on R, or a square isomorphism if it satisfies
the identity φ(x2) = (φ(x))2.

Jordan isomorphisms have been studied extensively, beginning with the papers
[1], [2], [12], [10], [11], [9]. We have no specific reference for square isomorphisms,
but they are of interest in this paper because idempotent proportion is an obvious
square isomorphism invariant.

By expanding φ((x + y)2), we see that every square isomorphism is a Jordan
isomorphism. In the converse direction, a Jordan isomorphism clearly satisfies
2φ(x2) = 2(φ(x))2, so Jordan and square isomorphisms are equivalent concepts
for possibly nonassociative rings of odd order, but not for possibly nonassociative
rings of even order. For instance all commutative possibly nonassociative Z2-
algebras are trivially Jordan isomorphic, but they need not be square isomorphic;
indeed, such possibly nonassociative algebras of dimension n have idempotent
proportion ranging from 2−n (for O2n) to 1 (for Zn

2 ).
The following simple lemma will be useful for verifying that an additive group

isomorphism is a square isomorphism.

Lemma 2.1. Suppose φ : R→ S is an additive group isomorphism, where R, S
are possibly nonassociative rings. Suppose also that the subset B ⊂ R generates
(R,+). Then φ is a square isomorphism if and only if:

(2.1)
φ(x2) = (φ(x))2 ,

φ(xy + yx) = φ(x)φ(y) + φ(y)φ(x) .

}
, x, y ∈ B .

Proof. Because a square isomorphism is a Jordan isomorphism, it satisfies (2.1).
The converse follows easily by distributivity. �

Observation 2.2. If Ri is square isomorphic to Si for i = 1, 2, then R1 ⊕ R2 is
square isomorphic to S1 ⊕ S2.

To prove that a pair of rings are not square isomorphic, we need some square
isomorphism invariants. Fortunately, several can easily be discovered.

Observation 2.3. For rings of finite order the following are square isomorphism
invariants: idempotent proportion, number of elements that are squares of other
elements, number of elements in the ring whose square is zero.

Finally in this section, we make one observation and record two simple lemmas
whose proofs we omit.

Observation 2.4. If x, y are both idempotent elements in a possibly nonasso-
ciative ring, then x+ y is idempotent if and only if xy + yx = 0.

Lemma 2.5. Suppose R1, R1 are finite possibly nonassociative rings, and x :=
x1⊕x2 ∈ R1⊕R2. Then x is idempotent if and only if x1, x2 are both idempotent.
Thus PrI(R1 ⊕R2) = PrI(R1) PrI(R2).
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Lemma 2.6. Suppose R is a ring of order 2n for some n ≥ 0, and (R,+) is
cyclic with generator u. Then R has either one or two idempotents, depending
on whether or not u2 ∈ 2R. Moreover if PrI(R) ≥ 1/2, then

PrI(R) ∈ {a(1), a(∞)} = {1, 1/2} .

If (R,+) is cyclic and PrI(R) = 1, then R is either the ring of order 1 or Z2. If
(R,+) is cyclic and PrI(R) = 1/2, then R is either O2 or Z4.

3. Proofs of main results

The proof of Theorem 1.1(a) is similar to, but shorter than, that of [6, Theo-
rem 3.2] which concerns p-rings for odd p, but we include a proof for completeness.
Note that the condition PrI(R) > 1/2 is best possible since PrI(Z4) = 1/2.

Proof of Theorem 1.1(a).
Let |R| = 2n. Suppose for the sake of contradiction that R is not an algebra.
Let S+, S− be the collection of elements in R of (additive) order at least 4, or
at most 2, respectively, and let N(A) denote the number of idempotents in any
subset A of R. Let m+ be the number of pairs (i, x) ∈ {1,−1} × S+ such that
ix is idempotent.

Since x and −x cannot both be idempotent for x ∈ S+, we have m+ ≤ |S+|.
However y 7→ iy is a bijection from S+ to S+ for both i = 1 and i = −1, so
the mapping f(i, x) := ix from {−1, 1} × S+ to S+ takes on each value twice.
Consequently,

N(S+) =
m+

2
≤ |S+|

2
.

By the fundamental theorem of finite abelian groups, (R,+) is an internal
direct sum A+⊕A−, where A+ is a direct sum of one or more cyclic groups of order
at least 4, and A− is an elementary abelian 2-group. Now x+⊕x− ∈ A+⊕A− has
order dividing 2 if and only if x+ has order dividing 2, in which case distributivity
implies that x2+ = x+x− = x−x+ = 0, and so (x+ ⊕ x−)2 = x2−. Thus N(S−) ≤
|A−| ≤ |S−|/2; the latter inequality holds because A+ is nontrivial. But R is the
disjoint union of S+ and S−, so combining the estimates for N(S+) and N(S−),
we get N(R) ≤ |R|/2, contradicting the assumption that PrI(R) > 1/2. �

Whenever R is a possibly nonassociative ring satisfying nR = 0 for some
n ∈ N, the Zn-Dorroh extension Dn(R) (introduced for rings in [7] and [5]) is
the possibly nonassociative ring S, where (S,+) = Zn ⊕ R and multiplication
is defined by (i ⊕ x)(j ⊕ y) = ij ⊕ (iy + jx + xy). Then S is a unital possibly
nonassociative ring with unity 1⊕ 0, and we identify R with {0} ⊕ R; also S is
associative if and only if R is associative.

Lemma 3.1. Suppose R, S are finite possibly nonassociative Z2-algebras.

(a) PrI(D2(R)) = PrI(R).
(b) D2(R) is square isomorphic to the ring direct sum Z2 ⊕R.
(c) If R and S are isomorphic (or square isomorphic), then D2(R) and D2(S)

are isomorphic (or square isomorphic, respectively).
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Proof. We first prove (b). Let S be the (internal) ring direct sum Z2 ⊕ R, so
that S and D2(R) are equal as sets, with R being a subring of each. The desired
square isomorphism φ : S → D2(R) is the identity map: although multiplication
is different in S and D2(R), it is readily verified that squares match up.

Since idempotent proportion is a square isomorphism invariant, (a) follows
immediately from (b). Lastly, the isomorphism part of (c) is as usual trivial.
The square isomorphism part follows by using the fact that D2(R) and D2(S)
are square isomorphic to Z2⊕R and Z2⊕S, respectively, and then appealing to
Observation 2.2. �

Suppose n ∈ N ∪ {0}. Throughout the rest of the paper, An will denote the
n-dimensional Z2-algebra with idempotent basis B = {u0, . . . , un−1} in which
multiplication of basis elements is defined by uiuj = ui; multiplication is extended
to all of An by distributivity. It is clear that multiplication gives a semigroup
structure to B, and so the associated Z2-vector space becomes an algebra.

The following definition is a special case of Definition 4.1 in [6].

Definition 3.2. Suppose l, r are non-negative integers and n := l + r + 1. Let
V be the n-dimensional vector space over Z2 with basis B := {ui | −l ≤ i ≤ r}.
Define a bilinear map φB : V × V → V by the equations

(3.1) φB(ui, uj) =


ui, 0 ≤ i, j ≤ r,

uj, −l ≤ i, j ≤ 0,

u0, −l ≤ i < 0 ≤ j ≤ r,

ui + uj − u0, −l ≤ j < 0 ≤ i ≤ r.

Bl,r is the vector space V equipped with multiplication xy := φB(x, y). We
define R−(B) := span{ui | −l ≤ i < 0}, R+(B) := span{ui | 0 < i ≤ r}, and
R0(B) := span{u0}. The above multiplication depends on the basis, so we refer
to B-multiplication whenever we need to indicate the basis.

It is simple to verify that Bl,r is a possibly nonassociative Z2-algebra of dimen-
sion l + r + 1, and it is clear that B0,n−1 = An for all n ∈ N. The importance of
Bl,r is tied to the following result.

Theorem 3.3. Suppose l, r are non-negative integers and n = l+r+1. Let Bl,r,
B, R+ := R+(B), R− := R−(B), and R0 := R0(B) be as in Definition 3.2.

(a) B is an idempotent basis of Bl,r.
(b) R+, R−, and R0 are subrings isomorphic to Ar, (Al)

op, and A1, respec-
tively.

(c) Bl,r is square isomorphic to An.
(d) PrI(Bl,r) = a(n).
(e) Bl,r is a Z2-algebra.
(f) If B′ := {u′i | −l ≤ i ≤ r} is another idempotent basis of Bl,r, such

that R−(B) = R−(B′), R+(B) = R+(B′), and R0(B) = R0(B′), then B′-
multiplication coincides with B-multiplication.

(g) Bl,r is isomorphic to Bl′,r′ if and only if l = l′ and r = r′.
(h) Bl,r has a right unity if and only if l = 0, and a left unity if and only if

r = 0.
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Theorem 3.3 is an analogue of Theorem 4.2 in [6], a result that deals with
similarly defined Zp-algebras for odd primes p. We omit the proof because most
of it follows exactly like the earlier result. The one exception is part (c), which
follows readily from Lemma 2.1.

Proof of Theorem 1.1, parts (b)–(d).
Theorem 3.3 says that PrI(Bl,r) = a(n) whenever l, r are non-negative integers
with l + r + 1 = n, while Lemma 2.6 tells us that PrI(O2) = a(∞). The fact
that these rings are of minimal order follows readily from the condition that
|R|PrI(R) is always an integer. Rings of any larger order with the same idem-
potent proportion as these rings are obtained simply by taking direct sums with
Boolean rings Zm

2 of the appropriate order. This proves (d). It remains to prove
that I2,na ∩ [1/2, 1] ⊂ A: once we prove this, we have (b), and then (c) follows
using Lemma 3.1(a).

It thus remains to show that if R is a finite possibly nonassociative ring of order
2n with PrI(R) > 1/2, then PrI(R) ∈ A. By (a), R is a possibly nonassociative
Z2-algebra. Let T be the set of all idempotents in R, and we assume without
loss of generality that |T | > 1: otherwise |R| = 1 and the result is trivial. Let
M be an additive subgroup of T of maximal order, so certainly |M | > 1.

For each subset S of R, we define the number d(S) := N1 − N2, where N1 is
the number of idempotents in S, and N2 is the number of non-idempotents in S.
By our hypotheses, we have d(R) > 0, and the desired conclusion is equivalent
to the statement that d(R) is a power of 2.

We now consider cosets of M in R of three different types. Type A cosets
are those satisfying M + x 6= M but (M + x) ∩ T 6= ∅, allowing us to assume
without loss of generality that x ∈ T . Observation 2.4 implies that u + x ∈ T
if and only if ux + xu = 0, and so (M + x) ∩ T is a coset of the subgroup
Mx of M consisting of all elements that anticommute with x. Moreover Mx 6=
M , since otherwise the subgroup generated by M and x would be a subgroup
of idempotents, contradicting the maximality of M . So |Mx|/|M | ≤ 1/2, and
d(M + x) ≤ 0.

The sole Type B coset is M itself: in this case d(M) = |M |. Finally Type C
cosets are those whose intersection with T is empty: in this case d(M) = −|M |.
Since d(R) > 0 is the sum of d(M + x) over all cosets, we see that there are no
type C cosets.

Consider now three separate cases, depending on the sizes of the subgroups
Mx of M for various Type A cosets.

Suppose first that |Mx|/|M | = 1/2 for each Type A coset M + x. Then
d(M + x) = 0 for every type A coset, and by summing over all cosets we get
d(R) = d(M) = |M |. This is a power of 2, as required.

Suppose next that for a single Type A coset M + y, we have |My|/|M | = 1/2j

for some j > 1, while for all other Type A cosets we have |Mx|/|M | = 1/2.
Summing over all cosets we see that

d(R) = d(M + y) + d(M) = −|M |(1− 2−j+1) + |M | = 2−j+1|M | ,
as desired.

Finally suppose that for at least two distinct Type A cosets M + y, y ∈ {u, v},
we have |My|/|M | ≤ 1/4. Then

d(R) ≤ d(M + u) + d(M + v) + d(M) ≤ −|M |
2
− |M |

2
+ |M | ≤ 0 ,
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contradicting the assumption that d(R) > 0. �

Proof of Theorem 1.2.
A finite nontrivial ring R is a direct sum of nontrivial rings Rp of order a power
of p for some finite set of primes p, and so the elements of I ∩ [1/2, 1] consist of
products of elements in Ip ∩ [1/2, 1] for a finite collection of primes p. But for
odd p, the largest elements of Ip are 1 (attained only by the trivial p-ring), 2/p
(attained only by Zp), and (p+1)/p2, according to the results of [6]. Of these, the
only numbers exceeding 1/2 are 1 and 2/3. Since (2/3)(3/4) does not exceed 1/2,
we see that I ∩ [1/2, 1] = A2 ∪ {2/3} and that, with one exception, these values
occur only for 2-rings. The one exception is that the direct sum of Z3 and a
Boolean ring has idempotent proportion 2/3. Since Ip,na∩ [1/p, 1] = Ip∩ [1/p, 1],
and since among possibly non-associative p-rings, the equations PrI(R) = 1 and
PrI(R) = 2/p occur only for the trivial p-ring and Zp, respectively, we get the
same conclusions for possibly nonassociative rings as for rings. �

There are both similarities and differences between Theorem 1.1 and [6, Theo-
rem 1.1] which is a roughly analogous result dealing with p-rings for odd primes
p. The values that arise for odd p are denoted in [6] as a(n, p) for 0 ≤ n ≤ ∞,
and they are natural analogues of the numbers a(n), 0 < n ≤ ∞, that arise for
p = 2. Parts (a) and (b) of the two results are natural analogues of each other,
although the proofs of the two parts (b) are very different: Theorem 1.1(b) is
based on classical group theoretic methods (used in [16], [13], and [14]), while
the proof of [6, Theorem 1.1(b)] is more combinatorial in nature. In terms of
the statements of the results though, Theorem 1.1(c) is the first significant indi-
cation that the condition PrI(R) > 1/p is a much less restrictive condition on a
p-ring R when p = 2 than when p > 2, since if p is an odd prime there are no
unital p-rings R with PrI(R) > 1/p other than Zp and the exceptional ring Z2

3;
see Theorems 4.2 and 4.4 of [6].

[6, Theorem 1.1(c)] provides further evidence of how much more restrictive
PrI(R) > 1/p is for odd p: it indicates that, with one exception, all possibly
nonassociative p-rings R for which PrI(R) = a(n, p) must be Jordan isomorphic
(or equivalently, square isomorphic). Furthermore if we insist on associativity,
then [6, Theorem 4.4] says that with one exception, each value a(n, p) of PrI(R) >
1/p gives rise to exactly n isomorphism types of p-rings: these types are the Zp-
analogues of what we here call Bl,r for l + r + 1 = n. The one exceptional case
in both of these results occurs when (p, n) = (3, 2), and is represented by Z2

3.
By contrast, no such result is possible when p = 2 for the simple reason that if

a finite ring R1 is the direct sum of a ring R0 and a Boolean ring, then PrI(R1) =
PrI(R0), and so the equation PrI(R) = a(n) does not even tie down the order
of R, let alone its square isomorphism type. Nevertheless one might hope for a
characterization of all possible isomorphism types, or at least square isomorphism
types of 2-rings R satisfying PrI(R) > 1/2. Unfortunately achieving this would
appear not to be straightforward, based on the evidence for rings of order 2k,
k ≤ 4, presented in the next section.

4. Rings of small order with many idempotents

In this section, we discuss rings R of order 2k, k ≤ 4, that satisfy PrI(R) > 1/2.
The cases k = 0, 1 are handled by Lemma 2.6, so let us begin by considering rings
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of order 4. Since it is not hard to do so in this case, we also consider the endpoint
condition PrI(R) = 1/2.

Theorem 4.1. Suppose R is a ring of order 4, and PrI(R) ≥ 1/2. Then one of
the following holds:

(a) PrI(R) = a(1) = 1, and R = Z2
2.

(b) PrI(R) = a(2), and R is isomorphic to either A2 or (A2)
op.

(c) PrI(R) = a(∞) = 1/2, and R is isomorphic to one of the following four
rings: Z4, GF(4), Z2 ⊕O2, and the Dorroh extension D2(O2).

(d) The above rings fall into five distinct square isomorphism classes. The
only square isomorphic pairs are the two in (b), and the pair Z2⊕O2 and
D2(O2).

Proof. If R is not an algebra, then (R,+) is cyclic, and the condition PrI(R) ≥
1/2 implies that R is isomorphic to Z4 since the other two rings R with cyclic
additive group and |R| = 4 are nil. Suppose therefore that R is an algebra. There
are eight algebras of order 4, as found for instance in [8], and (a)–(c) follow by a
routine examination of these types.

It remains to prove (d). The fact that the indicated pairs are square isomorphic
follows from Theorem 3.3(c) and Lemma 3.1(b). Since idempotent proportion
is a square isomorphism invariant, it remains only to prove that there are no
other square isomorphisms between the rings in (c). The additive structure of
Z4 distinguishes it from the others. We distinguish GF(4) from the other two
algebras in (c) by the number of squares that they contain: GF(4) has four, while
the other algebras have only two. �

Remark 4.2. The fact that for p = 2, the condition PrI(R) > 1/p for rings of
order p2 corresponds to two square isomorphism types and three isomorphism
types is not so different from the situation for odd primes p. In fact, an analysis of
the isomorphism types given in [8] shows that the numbers of square isomorphism
types and isomorphism types are the same for p = 3 as for p = 2, and they are
both smaller by one for p > 3 since then PrI(Z2

p) < 1/p. However this same
analysis reveals a large difference between p > 2 and p = 2 for the condition
PrI(R) = 1/p: there are no such rings of order p2 when p > 2 in contrast to the
four obtained when p = 2.

Theorem 4.3. Rings of order 8 with PrI(R) > 1/2 consist of exactly three square
isomorphism types and seven isomorphism types.

Proof. Consider first the rings that are directly decomposable: by Lemma 2.5, it
follows that these are each of the form S = Z2 ⊕ R, where R is one of the rings
in parts (a), (b) of Theorem 4.1. Of these Z2 ⊕ A2 and Z2 ⊕ (A2)

op are square
isomorphic by Theorem 3.3(c) and Observation 2.2, but they are not isomorphic
because the former has right unities, whereas the latter does not. Z2⊕Z2

2 is not
even square isomorphic to the other two because it has a different idempotent
proportion. Thus we get two square isomorphism types and three isomorphism
types.

We next consider the indecomposable rings. Theorem 3.3 gives three non-
isomorphic but square isomorphic Z2-algebras R of order 8 with PrI(R) > 1/2,
namely R = B2−r,r for r ∈ {0, 1, 2}. These must be indecomposable, since
otherwise they would have the same idempotent proportion as one of the earlier
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decomposable rings. However this is not the case, since PrI(R) = a(3) in all
cases.

Another ring to consider is the Dorroh extension R8 := D2(A2), with idem-
potent basis B := {e, f, 1}, where ef = e and fe = f . By Lemma 3.1(a),
PrI(R8) = PrI(A2) = a(2). Now R8 is self-opposite since it is isomorphic to the
Dorroh extension D2((A2)

op), as we see by considering the basis B′ := {e′, f ′, 1}
of R8, where e′ := 1 + e, f ′ := 1 + f . There are only two other rings of order
eight considered in this proof that have the same idempotent proportion, namely
S8 := Z2⊕A2 and S ′8 := Z2⊕(A2)

op. These last two rings are not self-opposite—
in fact, S ′8 = (S8)

op—so R8 is not isomorphic to either of them. However R8, S8,
and S ′8 are all square isomorphic by Lemma 3.1.

It remains to prove that no other isomorphism types are possible for indecom-
posable rings of order 8 satisfying PrI(R) > 1/2. By Theorem 1.1, it suffices to
consider Z2-algebras. We examine separately the various cases according to the
order of the Jacobson radical J(R). If |J(R)| = 1, then by the Artin-Wedderburn
theorem, R = GF(8), so R has only two idempotents and we eliminate this case.
We also eliminate the case |J(R)| = 8, because then R is nil.

There remain the cases |J(R)| ∈ {2, 4}. For these cases, we appeal to the
classification of rings of order p3 given in [3], and refer to rings as Numbers
17–24, according to their numbers in [3, pp. 461–462].

Number 17 is the only indecomposable Z2-algebra R of order 8 with |J(R)| = 2,
and we claim that this is R8. The presentation of Number 17 in [3] involves a
basis {e1, e2, a}, where e1, e2 are orthogonal idempotents, e1a = ae2 = a, and
a2 = ae1 = e2a = 0. We get these equations in R8 by taking e1 := 1 + e, e2 := e,
and a := e+ f , so the claim is true.

Numbers 18–24 are the only indecomposable Z2-algebras R of order 8 with
|J(R)| = 4. Numbers 18 and 19 are commutative rings, and each has a basis
consisting of the unity plus two nilpotent elements, so they only have one nonzero
idempotent, and we discard them. After some calculation, we see that numbers
21 and 22 each has three idempotents so we can discard them. (It is easier
to see that there are at most 4 idempotents in both cases, and this is already
enough to discard them: this holds when R is number 21 because R2 is a subset
of span{e, b}, and it holds for number 22 because it has a basis B := {a, e, b}
and both x2 and xy + yx lie in {e, b} for all choices of x, y ∈ B.) The three
remaining rings are of the form B2−r,r: number 20 is B0,2 (take {u0, u1, u2} :=
{e, e + a, e + b}), number 23 is B1,1 (take {u−1, u0, u1} := {e + b, e, e + a}), and
number 24 is B2,0 (take {u−2, u−1, u0} := {e+ a, e+ b, e}). �

Remark 4.4. Theorem 4.3 should be contrasted with the situation for rings
R of order p3 that satisfy PrI(R) > 1/p for some odd prime p. According to
Theorems 1.1 and 4.4 of [6] there are just one square isomorphism type and
three isomorphism types for such rings: each is a Zp-algebra of type analogous
to B2−r,r.

Theorem 4.5. Rings of order 16 with PrI(R) > 1/2 include at least five square
isomorphism types and at least sixteen isomorphism types.

Proof. Consider first the decomposable rings. Among these are the direct sums
S = R⊕Z2, where R is any of the seven rings occurring in Theorem 4.3: arguing
as in the proof of that theorem, we see that no two of these seven rings S
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are isomorphic, and that they are square isomorphic only if the corresponding
summands R are square isomorphic.

Next we consider direct sums of two rings of order 4. The only ones of these
that are different from the previous seven are R1 := A2⊕A2, R2 := A2⊕ (A2)

op,
and R3 := (A2)

op⊕ (A2)
op, which all give idempotent proportion a(4). By virtue

of having a different idempotent proportion from any of the first seven, they
cannot be square isomorphic to any of the earlier ones, but they are square
isomorphic to each other by Theorem 4.1(d). No two of them are isomorphic
since by Theorem 3.3(h), R1 has only right unities, R3 has only left unities, and
R2 has neither left nor right unities. Thus the decomposable rings of order 16
yield exactly four square isomorphism types and ten isomorphism types.

Next we have the four rings B3−r,r. Certainly no two of these rings are isomor-
phic by Theorem 3.3. They all have the same idempotent proportion a(4) as Ri,
i = 1, . . . , 3, and those are the only decomposable rings with that idempotent
proportion. Each B3−r,r is square isomorphic to A4, and so it has eight elements

with square zero since A4 has eight such elements (namely
∑3

i=0 aiui, where each

ai lies in Z2 with
∑3

i=0 ai = 0, and the elements u0, . . . , u3 form an idempo-
tent basis of A4, as in Definition 3.2). By contrast, A2 has two elements with
square zero, and so R1 = A2 ⊕A2 has four elements with square zero. Since Ri,
i = 1, . . . , 3, are all square isomorphic, they all have four elements with square
zero. Thus B3−r,r is not square isomorphic to the rings Ri, i = 1, 2, 3, and so it
must be indecomposable since we have ruled out it being isomorphic to any of
the decomposable examples.

Lastly we define the Dorroh extensions R16 = D2(A3) and S16 = D2(B1,1).
Thus R16 has idempotent basis {u0, u1, u2, 1} with uiuj = ui for all i, j, and S16

has idempotent basis {u−1, u0, u1, 1} with uiuj as defined in Definition 3.2. We
call {0, 1, 2} the index set of R16, and {−1, 0, 1} the index set of S16.

Then S16 is self-opposite because B1,1 is self-opposite, and R16 is self-opposite
because R16 = D2((A3)

op), as we can see by considering multiplication for the
basis {1 +u0, 1 +u1, 1 +u2, 1}. By Lemma 3.1, PrI(R16) = PrI(S16) = a(3). This
is the same idempotent proportion as the three rings B2−r,r ⊕ Z2, but each of
these latter rings is non-unital because each B2−r,r is non-unital, and so it cannot
be isomorphic to either of the unital rings R16 and S16.

Since A3 and B1,1 are square isomorphic, it follows from Lemma 3.1(c) that
R16 and S16 are square isomorphic. However we claim that R16 and S16 are not
isomorphic. Each has three nonzero nilpotents, namely elements of the form
z := ui +uj for distinct indices i, j, and eight idempotents that are different from
0 and 1. In both rings, we partition the set of idempotents into two subsets,
E := {ui | i ∈ I} ∪ {

∑
i∈I ui}, and F := {1 + x | x ∈ E}, where I is the index

set for the ring in question. For the ring R16 and a nilpotent z, ez = 0 whenever
e ∈ E, and ez = z whenever e ∈ F . However for the ring S16, if we choose the
nilpotent z := u1 + u−1 and the idempotent e := u0, we see that ez = u0 + u−1
is a nonzero idempotent different from z. The claim follows.

Lastly, it follows from Theorem 3.3(c) and Lemma 3.1(c) that both R16 and
S16 are square isomorphic to each of the rings B2−r,r ⊕ Z2. �

Remark 4.6. Theorem 4.5 should be contrasted with the situation for rings
R of order p4 that satisfy PrI(R) > 1/p for some odd prime p. According to
Theorems 1.1 and 4.4 of [6] there is just one square isomorphism type and four
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isomorphism types for such rings: each is a Zp-algebra of type analogous to
B3−r,r.

References
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