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Abstract. Let PrI(R) be the proportion of idempotents in a ring R, and
suppose p is an odd prime. We find all values of PrI(R) ∈ [1/p, 1] when R is
a (finite) p-ring, and all values of PrI(R) ∈ [1/3, 1] when R is a ring of odd
order. Additionally, we characterize all the possible isomorphism types of
R with PrI(R) > 1/p. Rings can be replaced by the larger class of possibly
nonassociative rings R without affecting the sets of values of PrI(R) > 1/p
that occur; in this case, we characterize all possible Jordan isomorphism
types of R.

1. Introduction

The idempotent proportion PrI(R) of a finite possibly nonassociative ring R
is defined by PrI(R) = m/|R|, where m is the number of idempotents in R. In
this paper, we study the sets

Iodd = {PrI(R) | R is a (possibly non-unital) ring of odd order} ,
Ip = {PrI(R) | R is a (possibly non-unital) p-ring} ,

where p is an odd prime and a p-ring means a ring of order pn for some n ≥ 0. We
also study the corresponding sets Iodd,na and Ip,na defined in terms of possibly
nonassociative rings, so trivially Iodd ⊂ Iodd,na and Ip ⊂ Ip,na. The sets Ip and
Ip,na for p = 2 are studied in [3].

Let us first recall a result of the second author [8, Theorem 3].

Theorem A. For each odd prime p, Ip∩ (1/(p−1), 1] = {1, 2/p}, and the only
p-rings R with PrI(R) in this range are the ring of order 1, and Zp.

It is conjectured in [8] that the number 1/(p − 1) in Theorem A could be
replaced by the strictly smaller value (p+1)/p2. Our first main result explicitly
lists all elements of Ip ∩ [1/p, 1], thereby implying this conjecture en passant.

Let us first define, for all primes p, the set Ap := {a(n, p) | 0 ≤ n ≤ ∞),
where

a(n, p) :=


1, n = 0 ,

(pn−1 + 1)/pn, n ∈ N ,
1/p, n =∞ .

Also let N(n, p) be the number of isomorphism types of p-rings for which
PrI(R) = a(n, p), and let NJ(n, p) and NJ,na(n, p) be the number of Jordan
isomorphism types of p-rings and possibly non-associative p-rings, respectively,
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for which PrI(R) = a(n, p). Jordan isomorphisms are defined in Section 2; we
consider them in this paper because idempotent proportion is a Jordan isomor-
phism invariant for rings of odd order.

Theorem 1.1. Suppose p is an odd prime.

(a) If R is a possibly nonassociative p-ring with PrI(R) > 2/p2, then R is a
possibly nonassociative Zp-algebra.

(b) Ip ∩ [1/p, 1] = Ip,na ∩ [1/p, 1] = Ap.
(c) other than the exceptional values NJ(2, 3) = NJ,na(2, 3) = 2, we have

NJ(n, p) = NJ,na(n, p) = 1, n ∈ N ∪ {0}.
The crucial reason for considering nonassociative rings in Theorem 1.1 is that

our method of proof makes use of nonassociative rings even if we wish to prove
the result only for (associative) rings, and so there is no extra work involved
in extending the result to possibly nonassociative rings. Additionally, the fact
that we get no additional PrI(R) values when R is allowed to be nonassociative
seems noteworthy.

Once we understand the large values that arise for all odd primes p, it is
easy to deduce what large values occur for all rings of odd order, leading to
the following result. Below, the parenthetical use of “possibly nonassociative”
means that the result is true whether this word is included in all cases, or
omitted in all cases.

Theorem 1.2. Iodd ∩ [1/3, 1] = Iodd,na ∩ [1/3, 1] = A3 ∪ {2/5}. Moreover if R
is a finite (possibly nonassociative) ring with PrI(R) ≥ 1/3, then either

(a) R ∼= Z5 and PrI(R) = 2/5, or
(b) R is a (possibly nonassociative) Z3-algebra and PrI(R) ∈ A3.

We also classify the p-rings with PrI(R) > 1/p up to isomorphism. The
following theorem indicates how many types occur for each possible value of
PrI(R) ∈ (1/p, 1); the omission of the case PrI(R) = 1 in this result is harmless,
since for odd p that value occurs only when |R| = 1; we will give details of the
precise types that arise later.

Theorem 1.3. Suppose p is an odd prime, n ≥ 0, and R is a p-ring with
PrI(R) = a(n, p). Then

(a) R is a Zp-algebra of order pn, and
(b) other than the exceptional value N(2, 3) = 3, we have N(n, p) = n.

After some preliminaries in Section 2, we characterize the Jordan isomorphism
types of nonassociative rings R satisfying PrI(R) > 1/p in Section 3, thus yield-
ing proofs of Theorems 1.1 and 1.2. Finally in Section 4, we assume associativity
and characterize all isomorphism types of rings for which PrI(R) > 1/p, yielding
a proof in particular of Theorem 1.3.

2. Preliminaries

We first list the basic terminology and notation used in this paper, other than
what was already given in the introduction. Throughout the rest of the paper,
p is an odd prime; we will state this fact explicitly in all formal results, but
leave it implicit elsewhere.

A ring is required to be associative, but is not necessarily unital. A p-ring
is a ring of order pn for some n ≥ 0. A Zp-algebra means a ring R in which
pR = {0}. Each of these concepts will be prefixed with the phrase possibly
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nonassociative whenever associativity is dropped as an assumption. To avoid
awkward terminology, we will not however include this phrase when describ-
ing objects derived from a given possibly nonassociative ring or algebra: thus
subrings, opposite rings, etc., are not in general assumed to be associative.

By a basis of a possibly nonassociative ring R, we mean a basis of (R,+),
which always exists by the fundamental theorem of finite abelian groups.
Zn is the ring of integers mod n, Z∗n is the group of units in Zn, and Zmn is the

direct sum of m copies of Zn. Op is the ring of order p in which all products
are zero.

Given a possibly nonassociative ring R, we define two other possibly nonas-
sociative rings Rop and Rsym that both have the same additive structure as
R but have a different multiplication whenever R is noncommutative. In the
definitions that follow, the new multiplication is denoted by ◦ and the original
multiplication is denoted by juxtaposition.

• In the opposite ring Rop, x ◦ y = yx.
• The symmetrized ring Rsym is defined only if we can divide by 2 in R

(for instance if nR = 0 for some odd n). Then x ◦ y = (xy + yx)/2.

A Jordan subring of R is an additive subgroup S of R such that xy + yx ∈ S
whenever x, y ∈ S. If R is associative, then Rsym is usually called a special
Jordan ring, but there appears to be no existing name for the construction
in the nonassociative case (which merely yields a commutative nonassociative
ring).

An idempotent of a ring R is an element x satisfying x2 = x.
We now record two simple lemmas whose proofs we omit.

Lemma 2.1. Suppose x := x1 ⊕ x2 ∈ R1 ⊕ R2, where R1, R1 are possibly
nonassociative rings. Then x is idempotent if and only if x1, x2 are idempotent.
Thus if R1, R2 are finite, then PrI(R1 ⊕R2) = PrI(R1) PrI(R2).

Lemma 2.2. If x, y are both idempotent elements in a possibly nonassociative
ring, then x+ y is idempotent if and only if xy + yx = 0.

Suppose R, S are possibly nonassociative rings and f : R → S is an additive
group isomorphism. We call f a Jordan isomorphism if it satisfies the identity
f(xy + yx) = f(x)f(y) + f(y)f(x) on R, or a square isomorphism if it satis-
fies the identity f(x2) = (f(x))2; we call these identities the Jordan and square
identities, respectively. Jordan isomorphisms have been studied extensively, be-
ginning with the papers [1], [2], [7], [5], [6], [4]. Note that a Jordan isomorphism
between possibly nonassociative rings R, S is merely an isomorphism between
Rsym and Ssym.

We have no specific reference for square isomorphisms, but they are closely
related to Jordan isomorphisms. It is clear that every square isomorphism is a
Jordan isomorphism (consider f(x2) with x = u+ v). In the converse direction,
a Jordan isomorphism clearly satisfies 2f(x2) = 2(f(x))2, so Jordan and square
isomorphisms are equivalent concepts for possibly nonassociative rings of odd
order, the only algebraic systems of concern in this paper.

Although for us they are equivalent, the bilinear nature of Jordan isomor-
phisms is useful, yielding in particular the following useful observation.

Observation 2.3. If f : R → S is an additive group isomorphism between
possibly nonassociative rings whose additive groups are finitely generated, and
if B is a basis of R, then f is a Jordan isomorphism if and only if the Jordan
identity holds for all x, y ∈ B.
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The point of considering square isomorphisms f : R → S between possibly
nonassociative rings is that it follows immediately from the definition that f(x)
is idempotent if and only if x ∈ R is idempotent. This allows us to make the
following observation.

Observation 2.4. If f : R→ S is a Jordan isomorphism of odd order possibly
nonassociative rings, then f(x) is a nonzero idempotent if and only if x is a
nonzero idempotent. Consequently, idempotent proportion is a Jordan isomor-
phism invariant when restricted to the class of possibly nonassociative rings of
odd order.

Note that the above observation fails in rings of even order: for instance, all
commutative Z2-algebras R of dimension n are Jordan isomorphic, but these
include at one extreme the Boolean algebraR = Zn2 (with PrI(R) = 1) and at the
other extreme the algebra R in which all products are zero (with PrI(R) = 2−n).

Suppose n ∈ N∪ {0}. Throughout the rest of the paper, An,p will denote the
n-dimensional Zp-algebra with idempotent basis {u1, . . . , un} in which multipli-
cation of basis elements is defined by uiuj = ui; multiplication is extended to all
of An,p by distributivity. This multiplication clearly gives the basis a semigroup
structure, and so the associated Zp-vector space becomes an algebra.

We now compute the idempotent proportion of An,p.

Lemma 2.5. Given a prime p and n ∈ N, let An,p be defined with basis
{u1, . . . , un}, as above. Let x :=

∑n
i=1 xiui ∈ An,p, where the coefficients xi

all lie in Zp. Writing s :=
∑n

i=1 xi ∈ Zp, the following are equivalent:

(a) s = 1.
(b) x is a right unity.
(c) x is a nonzero idempotent.
(d) xy + yx = x+ y whenever y is a nonzero idempotent.

Consequently, PrI(An,p) = a(n, p). This last equation holds also for n = 0.

Proof. Defining y :=
∑n

i=1 yiui, where yi ∈ Zp for all i, a simple calculation
shows that yx = sy. With this in hand, the equivalence of (a)–(c) follows easily.
In view of (b), part (d) is equivalent to the condition yx = y whenever y is a
nonzero idempotent. Since in general yx = sy, and since nonzero idempotents
exist, this is again equivalent to s = 1.

The set of all x with s = 1 can be identified with a coset of the surjective
group homomorphism φ : Znp → Zp given by φ(x1, . . . , xn) =

∑n
i=1 xi, so there

are pn−1 such elements and PrI(An,p) = a(n, p).
The case n = 0 is of course trivial. �

Since all nonzero idempotents in An,p are right unities, it follows that the
linear map induced by a bijection between any two idempotent bases of An,p is
an automorphism.
An,p and (An,p)

op are Jordan isomorphic, since trivially every possibly nonas-
sociative ring R is Jordan isomorphic to Rop via the identity map. However for
n > 1, An,p and (An,p)

op are non-isomorphic because the former has pn−1 right
unities and the latter has no right unities.

We will not need the following simple result, but we state it because it in-
dicates a striking difference between odd orders and the situation for p = 2 in
which nontrivial subgroups of idempotents exist (e.g. Boolean rings).
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Proposition 2.6. If R is a ring of odd order and S is the set of idempotents
in R, then the only subgroup of (R,+) contained in S is the trivial subgroup.

Proof. Suppose G is a subgroup contained in S, and x ∈ G. Then −x =
(−x)2 = x2 = x. Thus 2x = 0, and so x = 0 because |R| is odd. �

Despite Proposition 2.6, note that the idempotents in An,p are closely con-
nected to a subgroup, since the set of all nonzero idempotents is a coset of a
subspace G with codimension 1 in An,p.

3. Classification up to Jordan isomorphism

Since PrI(R) is a Jordan isomorphism invariant, it is natural to attempt to
characterize possibly nonassociative rings R with a given value of PrI(R) up
to Jordan isomorphism. The following set of three results exhibit all values of
PrI(R) ≥ 1/p among possibly nonassociative p-ringsR, and also characterize the
Jordan isomorphism types that give rise to values of PrI(R) strictly exceeding
1/p.

Lemma 3.1. Suppose R is a ring of order pn for some prime p and n ≥ 0, and
(R,+) is cyclic with generator u. Then R has either one or two idempotents,
depending on whether or not u2 ∈ pR. Moreover if PrI(R) ≥ 1/p, then

PrI(R) ∈ {a(0, p), a(1, p), a(∞, p)} = {1, 2/p, 1/p} ,
and each of these possibilities is associated with a single isomorphism class of
rings of order at most p, namely the ring of order 1, Zp, and Op.

Theorem 3.2. Let p be an odd prime, and let R be a possibly nonassociative
p-ring such that PrI(R) > 2/p2. Then R is a possibly nonassociative Zp-algebra.

The cutoff for PrI(R) in the above theorem cannot be improved, as evidenced
by PrI(Zp2) = 2/p2.

Theorem 3.3. Suppose p is an odd prime, n ≥ 0, and R is a possibly nonas-
sociative ring of order pn such that PrI(R) > 1/p. Then

(a) If (n, p) = (2, 3), then R is Jordan isomorphic to either A2,3 or Z2
3.

(b) If (n, p) 6= (2, 3), then R is Jordan isomorphic to An,p.
(c) PrI(R) = a(n, p).

Using the above results, it is not hard to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. The fact that Ip∩ [1/p, 1] contains Ap follows from Lem-
mas 2.5 and 3.1. Conversely, the fact that Ip,na ∩ [1/p, 1] is contained in Ap

follows from Theorem 3.3. Parts (a) and (c) follow from Theorems 3.2 and
3.3. �

The following lemma follows in the same manner as for finite rings, a context
in which the conclusion is well known. For completeness, we sketch the proof.

Lemma 3.4. A finite possibly nonassociative ring R is a direct sum of possibly
nonassociative p-rings.

Proof. For each prime p dividing |R|, we define Rp := mpR, where mp :=
|R|/pkp and kp is the largest number k ∈ N such that pk divides |R|. The fact
that the possibly nonassociative rings Rp have trivial intersection follows from
distributivity, and the fact that every x ∈ R can be written as a sum of elements
of the form mpx follows from Bézout’s identity. �
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Proof of Theorem 1.2. Writing R as a direct sum of nontrivial p-rings Rp, we
see from Theorem 1.1 that only p = 3 and p = 5 can arise, since 2/7 < 1/3. If
|R| is divisible by 5, then R must be a 5-ring because (2/5)(2/3) < 1/3. Also
a(2, 5) = 6/25 < 1/3, so we must have PrI(R) = 2/5. The one isomorphism
type of a 5-ring with PrI(R) = 2/5 is R = Z5, again by Theorem 1.1. If instead
R is a 3-ring, then R is a Z3-algebra and PrI(R) ∈ A3 by Theorem 1.1. �

Proof of Theorem 3.2. We suppose for the sake of contradiction that R is not
a Zp-algebra. Let |R| = pn and denote by N(A) the number of idempotents
in a subset A of R. Let S+, S2, and S1 be the collection of elements in R of
order exceeding p2, equal to p2, or equal to p, respectively. Then |S+| = pn−pk,
|S2| = pk − pj, and |S1| = pj − 1, where j ≥ 1 and n ≥ k ≥ 2.

Suppose first that S+ is nonempty, and so n > k. Let T be the collection of
integers 1 ≤ i < p3 that are coprime to p. For each x ∈ S+, it follows readily
that ix is idempotent for at most one integer i ∈ T . Consequently, m+ ≤ |S+|,
where m+ is the number of pairs (x, i) ∈ S+ × T such that ix is idempotent.
However y 7→ iy is a bijection on S+ for each i ∈ T , so the mapping f(x, i) := ix
from S+ × T to S+ takes on each value |T | = p2(p− 1) times. It follows that

N(S+) =
m+

|T |
≤ |S+|
p2(p− 1)

=
pn − pk

p2(p− 1)
.

In a similar fashion, we see that

N(S2) ≤
|S2|

p(p− 1)
=

pk − pj

p(p− 1)
.

The analogous estimate for S1 is not good enough for our purposes, so we
work a little harder to improve it. By the fundamental theorem of finite abelian
groups, (R,+) can be written as an internal direct sum A′ ⊕ A1, where A′

is a direct sum of one or more cyclic groups of order p2 or larger, and A1 is
an elementary abelian group. Note that |S1| + 1, the number of elements of
order dividing p, is at least p|A1|. Now x = x′ ⊕ x1 ∈ A′ ⊕ A1 has order
dividing p if and only if x′ has order dividing p, in which case distributivity
implies that (x′)2 = x′x1 = x1x

′ = 0, and so x2 = x21 ∈ A1. It follows that
N(S1) ≤ N(A1 \ {0}). Moreover if x ∈ A1, then at most one of the elements
ix, 1 ≤ i < p, can be idempotent, so

N(S1) ≤
|A1| − 1

p− 1
≤ (|S1|+ 1)− p

p(p− 1)
=

pj − p
p(p− 1)

.

Adding the estimates for the number of idempotents of different orders, and not
forgetting the zero idempotent, we see that

N(R) ≤ pn − pk + pk+1 − pj+1 + pj+1 − p2 + p3 − p2

p2(p− 1)
.

We claim that N(R) ≤ 3pn−3, or equivalently

D := p2(p− 1)(3pn−3 −N(R)) ≥ 0 .

Now k < n and

D ≥ Dn,k := 3pn − 3pn−1 − pn − pk+1 + pk − p3 + 2p2 .
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Since Dn,k is decreasing as a function of k, we have

Dn,k ≥ Dn,n−1 = pn − 2pn−1 − p3 + 2p2 ,

Since p > 2, this last expression is increasing as a function of n, and

Dn,n−1 ≥ D3,2 = 0 ,

as claimed.
Consequently, N(R) ≤ 3pn−3 ≤ pn−2 and PrI(R) ≤ p−2. This rules out all

rings with elements of order exceeding p2.
Thus we may assume that S+ is empty, |S2| = pn − pj, and |S1| = pj − 1,

where n ≥ j + 1 ≥ 2. As before,

N(S2) ≤
|S2|

p(p− 1)
=

pn − pj

p(p− 1)
.

Now (R,+) is of the form A2 ⊕ A1, where A2 is a direct sum of one or more
cyclic groups of order p2, and A1 is an elementary abelian group. If A1 is trivial
then, arguing as before, we see that there are no nonzero idempotents outside
S2, and so

PrI(R) ≤ En,j := p−n +
1− pj−n

p(p− 1)
.

Now Ej,n is decreasing as a function of j, so

En,j ≤ En,1 =
1 + p2−n − 2p1−n

p(p− 1)
.

It is clear from this last expression that En,1 is strictly decreasing as a function of
n, and so En,1 ≤ E2,1 = 2/p2, with equality only if n = 2. Thus PrI(R) ≤ 2/p2,
with equality possible only if j = 1 and n = 2 (and equality does occur for Zp2).
In any case, we get a contradiction.

Finally, we consider the case where A1 and A2 are both nontrivial, and so
n ≥ j + 1 ≥ 3. As before,

N(S1) ≤
|A1| − 1

p− 1
≤ pj − p
p(p− 1)

,

and so

N(R) ≤ pn − pj + pj − p+ p2 − p
p(p− 1)

=
pn + p2 − 2p

p(p− 1)
.

To finish the proof, we show that N(R) < 2pn−2, or equivalently

F := p(p− 1)(2pn−2 −N(R)) > 0 .

Now
F ≥ Fn := pn − 2pn−1 − p2 + 2p ,

and Fn is an increasing function of n, so

Fn ≥ F3 = p3 − 3p2 + 2p = p(p− 1)(p− 2) > 0 . �

Remark 3.5. It follows from the proof that for any odd prime p, there is only
one p-ring with PrI(R) = 2/p2 that is not a Zp-algebra, namely R = Zp2 .
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Proof of Theorem 3.3 for n = 2.
Because PrI(R) > 1/p, there are at least four idempotents. By Lemma 3.1,
these idempotents cannot all be contained in a single cyclic subgroup of (R,+).
It follows that R has an idempotent basis {u, v}. We write uv + vu = λu+ µv,
λ, µ ∈ Zp.

Let x := iu+ jv, i, j ∈ Zp. Then

(3.1) x2 = (iu+ jv)2 = i(i+ jλ)u+ j(j + iµ)v .

The equation x2 = x has at least three solutions, namely 0, u, and v. In any
other case i, j 6= 0, and so

(3.2) i+ jλ = 1 and j + iµ = 1 .

Solving for i in the first equation of (3.2), and substituting into the second
yields

(3.3) j(1− λµ) = 1− µ .

Note that (3.2) is a system of linear equations in the unknowns i, j with
augmented matrix (

1 λ 1
µ 1 1

)
By Lemma 2.5 and Observation 2.3, if (λ, µ) = (1, 1) then R is Jordan iso-
morphic to A2,p, so we may suppose that (λ, µ) 6= (1, 1). But then the aug-
mented matrix has rank 2, and so there is at most one pair (i, j) satisfying
(3.2). Thus there are at most four idempotents in total, which is inconsistent
with PrI(R) > 1/p when p > 3.

Suppose therefore that p = 3. The condition PrI(R) > 1/3 means that the
fourth idempotent must exist. If µ = 1, then since j 6= 0, (3.3) would force
λ = 1, a case that we already considered.

Suppose instead that µ = −1. Then j(1 + λ) = 2 and i = 1− jλ. Now λ = 1
would force i = 0 which we do not allow, while λ = −1 is inconsistent with
the equation j(1 + λ) = 2, so we eliminate both possibilities. The remaining
possibility is that λ = 0 and so uv+ vu = −v, and the last idempotent is u− v.
Taking x = v and y = u − v, we see that xy + yx = 0, and so R is Jordan
isomorphic to Z2

3.
Lastly suppose µ = 0. Now (3.3) implies that j = 1 and (3.2) gives i = 1−λ.

We get the desired final idempotent if either λ = 0 or λ = −1. If λ = 0, then
uv + vu = 0 and R is Jordan isomorphic to Z2

3. The final case (µ, λ) = (0,−1)
is by symmetry equivalent to the previously considered case (µ, λ) = (−1, 0),
so again R is Jordan isomorphic to Z2

3.
We have proven parts (a) and (b). As for (c), since idempotent proportion

is a Jordan isomorphism invariant for rings of odd order, this follows from the
equations PrI(A2,p) = a(2, p) and PrI(Z3) = a(1, 3) proven in Lemmas 2.5 and
3.1, together with Lemma 2.1. �

Remark 3.6. Let us record a noteworthy consequence of the above proof: if R
is a possibly nonassociative ring of order p2 with more than four idempotents,
then it is Jordan isomorphic to A2,p and has p+ 1 idempotents (with p > 3).

We now prove the remaining parts of Theorem 3.3.
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Proof of Theorem 3.3 (b), (c), for n 6= 2.
Since PrI(An,p) = a(n, p) and idempotent proportion is a Jordan isomorphism
invariant for rings of odd order, it suffices to prove (b).

The cases n ∈ {0, 1} follow from Lemma 3.1, since A0,p is isomorphic to
the trivial ring, and A1,p is isomorphic to Zp. We therefore suppose that R
is a n-dimensional possibly nonassociative Zp-algebra for some n ≥ 3, and
PrI(R) > 1/p. We may also suppose that R has a nonzero idempotent e, and
we let E = span{e} be the associated subring.

Let x be an element of R \ E, and let Ux := span{x, e}. Let Vx be a com-
plementary subspace in R to Ux, and let πx : R → Ux be projection on the
Ux-subspace, so that u− πx(u) ∈ Vx for all u ∈ R. Now define a multiplication
∗ on Ux by the equation u∗v = πx(uv) for all u, v ∈ R. We call u a ∗-idempotent
if u ∗ u = u, and reserve the unqualified term idempotent for the original mul-
tiplication of R. Then (Ux,+, ∗) is a two-dimensional possibly nonassociative
Zp-algebra (note that it may be nonassociative even if R itself is associative),
and so it has at most p+ 1 ∗-idempotents by the previously proved case n = 2.
Consequently Wx := Ux \E has at most p−1 ∗-idempotents, and hence at most
p− 1 idempotents, since the equation u2 = u implies u ∗ u = u.

The subsets Wx partition R\E into subsets of size p2−p, and the proportion
of idempotents in each is at most (p− 1)/(p2− p) = 1/p. Thus the same is true
of R \ E as a whole, and so there are at most pn−1 − 1 idempotents in R \ E.
Since exactly two elements of E are idempotent, it follows that the number of
idempotents in R is at most pn−1 + 1, and so

(3.4) PrI(R) ≤ pn−1 + 1

pn
= a(n, p) .

Equality in (3.4) means having pn−1 + 1 idempotents in R. Thus in the absence
of equality, we have PrI(R) ≤ 1/p, contradicting our hypothesis. Thus a(n, p)
is the only value of PrI(R) consistent with the condition PrI(R) > 1/p for an
n-dimensional possibly nonassociative Zp-algebra.

It remains to prove that R is Jordan isomorphic to An,p. In the above ar-
gument, the condition PrI(R) > 1/p requires the equality PrI(R) = a(n, p),
which in turn requires that there are exactly p + 1 idempotents in every ring
set Ux above, and so every ∗-idempotent in Ux must be an idempotent. More-
over, there must exist an idempotent u ∈ Ux \ E, and so {e, u} is a basis for
Ux, and we must have ue + eu ∈ Ux (since otherwise 0, e, u are the only idem-
potents in Ux). It follows by distributivity that Ux is a Jordan subring of R.
Note also that the Jordan structures defined on Ux by · and by ∗ are the same,
i.e. vw+wv = v ∗w+w ∗ v for all u, v ∈ Ux: this follows by linearity of πx and
the fact that πx|Ux is the identity map. It is convenient to denote this Jordan
product on R by ◦, i.e. v ◦ w = vw + wv for all v, w ∈ R; note that v is an
idempotent if and only if v ◦ v = 2v.

We call the argument in the preceding paragraph a projection argument: the
input to this argument is (e, x), where e is a nonzero idempotent and x /∈ E :=
span{e}. The output is a nonzero idempotent u ∈ Ux := span{e, x} such that
span{e, u} = Ux. Additionally, Ux is a Jordan subring; this is a very strong
restriction that will enable us to rule out most of the remaining possibilities, so
we record it as a formal fact.
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Fact 3.7. Every two-dimensional subspace of R containing a nonzero idempo-
tent is a Jordan subring of R.

If we start off with a basis {x1, . . . , xn} of R where e1 := x1 is an idempotent,
and we apply projection arguments with input (e1, xj) for each 2 ≤ j ≤ n, then
we get outputs ej such that B = {e1, . . . , en} is an idempotent basis of R. Also
by Fact 3.7, Rij := span{ei, ej} is a Jordan subalgebra for each pair of distinct
indices 1 ≤ i, j ≤ n.

Suppose first that p > 3. By the case n = 2 and Observation 2.3, each Rij is
Jordan isomorphic to A2,p. It follows from Lemma 2.5 that any bijection from
an idempotent basis of An,p to B satisfies the Jordan identity on this basis, and
so R is Jordan isomorphic to An,p by Observation 2.3.

Suppose instead that p = 3. In this case, we have to rule out the possibility
that some of the Jordan subalgebras Rij are Jordan isomorphic to Z2

3. If, for
a set of three distinct indices i, j, k, Rij is Jordan isomorphic to Z2

3, and Rjk

is Jordan isomorphic to A2,3, then there exist idempotent bases {ui, uj} of Rij,
and {uj, uk} of Rjk satisfying the equations ui ◦uj = mui and uj ◦uk = uj +uk,
where m is either 2 or 0, depending on whether or not uj maps to the identity
element under the Jordan isomorphism Rij → Z2

3. Thus

uj ◦ (ui + uk) = mui + uj + uk .

Whetherm = 0 orm = 2, the elementmui+uj+uk is not in the two-dimensional
subspace spanned by uj and ui +uk, so this subspace is not a Jordan subring of
R even though it contains a nonzero idempotent uj. This contradicts Fact 3.7.
It follows that either every Rij is Jordan isomorphic to A2,3, or every one is
Jordan isomorphic to Z2

3. If all are Jordan isomorphic to A2,3, then R is Jordan
isomorphic to An,p, again by Observation 2.3.

Suppose instead that every Rij is Jordan isomorphic to Z2
3. This implies that

ei ◦ ej ∈ {0, 2ei, 2ej} for each i, j. Let us take three distinct indices i, j, k and
rule out all possible options for the values of the resulting Jordan products.

Suppose first that ei ◦ ej = 2ej and that ei ◦ ek 6= 2ek. Thus ei ◦ ek = mei,
where m ∈ {0, 2}. Then ei and ej + ek both lie in S := span{ei, ej + ek}, but
ej ◦ (ei + ek) = 2ej + mei /∈ S, contradicting Fact 3.7. It follows that either
ei ◦ ej = 0 for all pairs of distinct integers 1 ≤ i, j ≤ n, or that there is a
distinguished idempotent, which we can take to be e1 without loss of generality,
such that e1◦ej = 2ej for all 2 ≤ j ≤ n and ei◦ej = 0 for all 2 ≤ i ≤ n. We claim
that this second case reduces to the first if we replace e1 by e′1 := e1 −

∑n
i=2 ei.

Assume that we are in the second case. First, we use distributivity of ◦ to
expand e′1 ◦ e′1, discarding all zero terms:

e′1 ◦ e′1 = e1 ◦ e1 − 2
n∑
i=2

e1 ◦ ei +
n∑
i=2

ei ◦ ei

= 2e1 − 2
n∑
i=2

2ei +
n∑
i=2

2ei = 2e′1 ,

and so e′1 is an idempotent. Also, for all 2 ≤ j ≤ n,

e′1 ◦ ej = e1 ◦ ej −
n∑
i=2

ei ◦ ej = 0 .
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It is now clear that {e′1}∪{ej | 2 ≤ j ≤ n} is an idempotent basis of R such that
the Jordan product of any two distinct elements is 0. This gives the claimed
reduction.

It remains to derive a contradiction under the assumption that ei ◦ ej = 0 for
all distinct indices i, j. Replace e1 by e′′ := e1 + e2. By distributivity, as before,
we see that e′′ is idempotent, so B′′ := {e′′}∪ {ej | 2 ≤ j ≤ n} is an idempotent
basis of R. Also e′′ ◦ e2 = 2e2, but e′′ ◦ ej = 0 for all j > 2. Earlier, we saw that
such a configuration contradicts Fact 3.7, so we are done. �

Remark 3.8. Although Fact 3.7 tells us that many two-dimensional subspaces
of R are closed under the symmetrized operation, these are not necessarily
closed under the original multiplication of R. For instance, whenever l, r ∈ N,
the algebras Bl,r,p of Definition 4.1 below have two-dimensional subspaces with
basis given by a pair of idempotents that nevertheless fail to be closed under
multiplication.

4. Classification up to isomorphism

The characterization of possibly nonassociative p-rings R satisfying PrI(R) >
1/p up to Jordan isomorphism given in the previous section can readily be used
to give a characterization up to isomorphism. For instance the main case where
R is Jordan isomorphic to An,p corresponds to R being an n-dimensional Zp-
algebra with idempotent basis {u1, . . . , un} where uiuj is defined as follows for
distinct indices i, j:

(a) uiuj = vij if i < j; here vij ∈ R is arbitrary.
(b) uiuj = ui + uj − vij if i > j.

Multiplication is then extended to all of R by distributivity.
Of course in most cases R as defined above is nonassociative. So there remains

the problem of classifying p-rings R such that PrI(R) > 1/p. We carry out such
a classification in this final section.

Definition 4.1. Suppose p is a prime, l, r are non-negative integers, and n :=
l+ r+ 1. Let V be the n-dimensional vector space over Zp with basis B := {ui |
−l ≤ i ≤ r}. Define a bilinear map ψB : V × V → V by the equations

(4.1) ψB(ui, uj) =


ui, 0 ≤ i, j ≤ r,

uj, −l ≤ i, j ≤ 0,

u0, −l ≤ i < 0 ≤ j ≤ r,

ui + uj − u0, −l ≤ j < 0 ≤ i ≤ r.

Denote by Bl,r,p the vector space V equipped with multiplication xy := ψB(x, y),
and define R−(B) := span{ui | −l ≤ i < 0}, R+(B) := span{ui | 0 < i ≤ r},
and R0(B) := span{u0}. The above multiplication depends on the basis, so we
refer to B-multiplication whenever we need to indicate the basis.

There is some overlap between the cases in the above definition, so we need to
verify that these overlapping cases are consistent. Specifically the cases i, j ≥ 0
and i, j ≤ 0 overlap when i = j = 0, and i, j ≤ 0 overlaps with the final two cases
if i < 0 = j or if j < 0 = i. In the first two cases, both parts of the definition
say that uiuj = u0, while in the last case, both parts say that uiuj = uj. Thus
the definition is consistent, and bilinearity of ψB implies that Bl,r,p is a possibly
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nonassociative Zp-algebra. Note also that B0,n−1,p is isomorphic to An,p, and
Bn−1,0,p is isomorphic to (An,p)

op.
The following theorem establishes some important properties of Bl,r,p.

Theorem 4.2. Suppose p is an odd prime, l, r are non-negative integers, and
n = l + r + 1. Let Bl,r,p, B, R− := R−(B), R+ := R+(B), and R0 := R0(B) be
as in Definition 4.1.

(a) B is an idempotent basis of Bl,r,p.
(b) R+, R−, and R0 are subrings isomorphic to Ar,p, (Al,p)

op, and A1,p,
respectively.

(c) Bl,r,p is Jordan isomorphic to An,p.
(d) PrI(Bl,r,p) = a(n, p).
(e) Bl,r,p is a Zp-algebra.
(f) If B′ := {u′i | −l ≤ i ≤ r} is another idempotent basis of Bl,r,p, such

that R−(B) = R−(B′), R+(B) = R+(B′), and R0(B) = R0(B′), then
B′-multiplication coincides with B-multiplication.

(g) Bl,r,p is isomorphic to Bl′,r′,p′ if and only if l = l′, r = r′, and p = p′.
(h) Bl,r,p has a right unity if and only if l = 0, and a left unity if and only if

r = 0.

By the above theorem, there are n distinct isomorphism classes of Bl,r,p with
l+ r+ 1 = n for any given n and p, and in each case PrI(Bl,r,p) = a(n, p) > 1/p.

Definition 4.3. We call a ring R a special ring if PrI(R) > 1/p and R is not
isomorphic to any of the rings Bl,r,p.

Bearing in mind Theorem 4.2(d), the following result gives the desired classi-
fication of p-rings satisfying PrI(R) > 1/p up to isomorphism.

Theorem 4.4. Suppose p is an odd prime, n ∈ N, and R is a p-ring of order
pn with PrI(R) > 2/p2.

(a) R is a Zp-algebra.
(b) If in fact PrI(R) > 1/p, then PrI(R) = a(n, p).
(c) The only special ring is Z2

3.

The main new part of Theorem 4.4 is implied by the following result.

Theorem 4.5. Suppose p is an odd prime and n ∈ N.

(a) A ring R is Jordan isomorphic to Znp if and only if it is isomorphic to
Znp .

(b) A ring R is Jordan isomorphic to An,p if and only if it is isomorphic to
Bl,r,p for some l, r ≥ 0 such that l + r + 1 = n.

We pause to give a couple of lemmas. The first is very simple but will be used
repeatedly, mostly without explicit reference. The second shows that most of
Lemma 2.5 extends to algebras that are merely Jordan isomorphic to An,p.

Lemma 4.6. Suppose R is a Zp-algebra for some prime p, and suppose a par-
ticular pair of idempotents u, v ∈ R satisfy uv + vu = u + v. Then uvu = u,
and uv is idempotent.

Proof. Multiplying uv + vu on the left by u, we get uv + uvu = u + uv, so
uvu = u. Now multiplying on the right by v, we see that uv is idempotent. �
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Lemma 4.7. Suppose R is a possibly nonassociative Zp-algebra for some odd
prime p, and φ : An,p → R is a Jordan isomorphism for some n ∈ N. Then:

(a) R has an idempotent basis.
(b) PrI(R) = a(n, p).
(c) If {v1, . . . , vn} is any idempotent basis of R, x :=

∑n
i=1 xivi ∈ R, and

s :=
∑n

i=1 xi ∈ Zp, with xi ∈ Zp for 1 ≤ i ≤ n, then the following are
equivalent:

(i) s = 1;
(ii) x is a nonzero idempotent;

(iii) xy + yx = x+ y whenever y is a nonzero idempotent.
(d) Every set S of independent idempotents in R is a subset of an idempotent

basis.

Proof. By definition, An,p has an idempotent basis, and it is clear by Observa-
tion 2.4 that φ sends an idempotent basis to an idempotent basis. This gives
(a). Part (b) follows from Lemma 2.5 and the fact that idempotent proportion
is a Jordan isomorphism invariant on the class of odd order rings.

We now prove (c). Let vi = φ(ui) for 1 ≤ i ≤ n, so that {u1, . . . , un} is an
idempotent basis of An,p. The equivalence of (i) and (ii) follow immediately
from Lemma 2.5 and Observation 2.4. In a similar fashion, the equivalence of
(ii) and (iii) follows from Observation 2.4 and the equivalence of parts (c) and
(d) of Lemma 2.5.

Finally, (d) is a straightforward consequence of (a): given an idempotent basis
B := {v1, . . . , vn} and an independent set of idempotents S containing k ≤ n
elements, we define a chain of independent sets S0 ⊂ S1 ⊂ · · · , where S0 := S
and Si+1 is obtained from Si by adding an element of B to Si. This process can
be continued until we obtain an idempotent basis Sn−k containing S. �

Proof of Theorem 4.2. Part (a) follows immediately from Definition 4.1, and
part (b) is obvious. For (c), it suffices to check that uiuj +ujui = ui +uj for all
indices i, j, and this is routine. Part (d) now follows from Lemma 4.7(b). Let
us also write A+ := R+ + R0, A− := R− + R0, and note that A+ and A− are
subalgebras isomorphic to Ar+1,p and (Al+1,p)

op, respectively.

For (e), we need to verify associativity, and for this it suffices to check that
ui(ujuk) = (uiuj)uk in all cases. If i, j, k are all non-negative or all nonpositive,
then these basis elements either lie in A+ or A−, subrings that are isomorphic to
Ar+1,p or (Al+1,p)

op, respectively, and associativity follows immediately. There
are six other cases to be checked: three with two non-negative indices and one
negative index, and three with two negative indices and one non-negative index.
By the left-right symmetry of the definition the last three cases reduce either to
the previous three cases or to the case of all non-negative indices. Thus there
remain only three cases to be checked.

If i < 0 and j, k ≥ 0, then

ui(ujuk) = uiuj = u0 = u0uk = (uiuj)uk .

If j < 0 and i, k ≥ 0, then

ui(ujuk) = uiu0 = ui = ui + u0 − u0 = (ui + uj − u0)uk = (uiuj)uk .
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Finally, if k < 0 and i, j ≥ 0, then

ui(ujuk) = ui(uj + uk − u0) = ui + (ui + uk − u0)− ui
= ui + uk − u0 = uiuk = (uiuj)uk .

We now prove (f). Let us write ψ := ψB and ψ′ := ψB′ , using the notation of
Definition 4.1. We assume that R+(B′) = R+, R−(B′) = R−, and R0(B′) = R0.
(The last equation just means that u′0 = u0.) Let u′i =

∑r
α=−l ciαuα, where

ciα ∈ Zp. Then ciα = 0 for all α ≤ 0 if i > 0, and ciα = 0 for all α ≥ 0 if
i < 0. It follows from Lemma 2.5 that

∑r
α=−l ciα = 1 regardless of the sign

of i, and that u′i is a left unity in A− when i ≤ 0 and a right unity in A+

when i ≥ 0. This already gives ψ(u′i, u
′
j) = u′i = ψ′(u′i, u

′
j) when i, j ≥ 0, and

ψ(u′i, u
′
j) = u′j = ψ′(u′i, u

′
j) when i, j ≤ 0. If i < 0 ≤ j, then

ψ(u′i, u
′
j) =

−1∑
α=−l

r∑
β=0

ciαdjβuαuβ =
−1∑
α=−l

r∑
β=0

ciαdjβu0 = u0 = ψ′(u′i, u
′
j) ,

because
∑−1

α=−l ciα =
∑r

β=0 diα = 1. Similarly if j < 0 ≤ i, then

ψ(u′i, u
′
j) =

r∑
α=0

−1∑
β=−l

ciαdjβuαuβ

=
r∑

α=0

−1∑
β=−l

ciαdjβ(uα + uβ − u0)

=

(
r∑

α=0

ciαuα

)
+

(
−1∑
β=−l

djβuβ

)
− u0

= u′i + u′j − u′0 = ψ′(u′i, u
′
j) .

We next prove (g). We identify isomorphism invariants of Bl,r,p that allow
us to distinguish between any two such algebras. The parameter p itself is one
obvious invariant, so it suffices to find invariants from which we can determine
l and r. (Actually it would suffice to be able to determine one of l and r,
since n = l + r + 1 is the dimension, but it is just as easy to determine both
simultaneously.)

We write R := Bl,r,p for given l, r, and define the vector space projection
P+ : R→ R+:

P+

(
r∑

i=−l

ciui

)
=

r∑
i=1

ciui .

For each idempotent x ∈ R, we define the subspace Lx := {y ∈ R | xy = y}
of R. We write y :=

∑r
i=−l yiui, where the coefficients yi lie in Zp, and let

sy :=
∑r

i=−l yi, x+ := P+(x), and y+ := P+(y).

Now P+(xy) = syx+, so y+ = syx+ for all y ∈ Lx. If x+ = 0 then the equation
y+ = syx+ requires that y+ = 0 also. But A− is isomorphic to (Al+1,p)

op, so all
of its idempotents are left unities, and thus in this case Lx = A− has dimension
l+1. Note that this case does occur, e.g. x := u0 is an idempotent with x+ = 0.
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Suppose instead that x+ 6= 0. In this case, y+ lies in the one-dimensional
subspace X := span{x+}. The condition syx+ = y+ implies that Lx is contained
in a subspace of X + A− of codimension 1. Thus dimLx ≤ l + 1.

We conclude that ML := maxx(dimLx) = l + 1, where x ranges over all
idempotents in R. By symmetry, if we define Rx := {y ∈ R | yx = y}, then
MR := maxx(dimRx) = r + 1, where again x ranges over all idempotents in R.

We assumed that l, r > 0 in the above argument. But if either l or r equals
0, then R is either An,p or (An,p)

op, respectively, and the above formulae for ML

and MR follow immediately.
The numbers ML and MR are the desired isomorphism invariants that allow

us to recover the parameters l and r, and hence to deduce that different choices
of the parameters l, r, p always lead to distinct isomorphism types for Bl,r,p.

Finally, we note that the invariants ML and MR automatically imply (h). �

Proof of Theorem 4.5. We first prove (a). Suppose R is Jordan isomorphic to
Znp , and so it has an idempotent basis {u1, . . . , un} with uiuj+ujui = 0 whenever
i, j are distinct indices. Now

uiuj = u2iuj = ui(uiuj) = ui(−ujui) = (−uiuj)ui = (ujui)ui = uju
2
i = ujui .

Thus 2uiuj = 0, and so uiuj = 0 since |R| is odd. Since this holds for all distinct
indices i, j, it follows that R = Znp , as desired.

We now prove (b). One direction follows from Theorem 4.2(c), so it remains
to prove that if a ring R is Jordan isomorphic to An,p for some n ∈ N, then it
is isomorphic to some Bl,r,p, where l + r + 1 = n. In fact we prove that R has
a chain of subalgebras Sm of dimension m for each 1 ≤ m ≤ n that are of the
form Blm,rm,p, such that lm + rm + 1 = m for all 1 ≤ m ≤ n. An idempotent
basis Bm of Sm will always be given by {ui | −lm ≤ i ≤ rm}, and there will
be an associated bilinear map ψm : Sm × Sm → Sm defined on Bm × Bm by
the equations ψm(ui, uj) := uiuj, −lm ≤ i, j ≤ rm. Moreover this function
ψm will always satisfy (4.1) (with l, r, ψB replaced by lm, rm, ψm), and Bm+1

will be formed from Bm by adjoining a single element u−lm−1 or urm+1, and so
lm+1 ∈ {lm, lm + 1} and rm+1 ∈ {rm, rm + 1}.

We begin by selecting any nonzero idempotent u0, and let S1 = span{u0}.
Because u0 is an idempotent, S1 is a subalgebra. Suppose we have defined Sm
for some m < n, and that Sm = Blm,rm,p. There remain idempotents outside
of Sm, since Sm has only pm−1 nonzero idempotents, whereas R has pn−1 of
them. Let us therefore select a nonzero idempotent v ∈ R \ Sm. By the Jordan
isomorphism property, u0v + vu0 = u0 + v, so at least one of u0v and vu0 lies
outside Sm. By symmetry, it suffices to consider only the case u := u0v /∈ Sm.
We exploit the identity xyx = x for nonzero idempotents x, y ∈ R (as follows
from Lemma 4.6 for rings that are Jordan isomorphic to An,p). For j < 0,

uuj = (u0v)(u0uj) = (u0vu0)uj = u0uj = uj .

For j ≥ 0,
uuj = (u0ujv)uj = u0(ujvuj) = u0uj = u0 .

The products uju are then calculated via the Jordan isomorphism property,
giving uju = u when j < 0 and uju = uj + u − u0 when j ≥ 0. Thus if
we define u−lm−1 := u, and write Bm+1 = Bm ∪ {u−lm−1}, then the bilinear
map ψm+1 : Sm+1 × Sm+1 → Sm+1 defined on Bm+1 × Bm+1 by the equations
ψm+1(ui, uj) := uiuj for all −lm − 1 ≤ i, j ≤ rm, satisfies (4.1) as required. �
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Proof of Theorem 4.4. Parts (a) and (b) are just restatements of Theorems 3.2
and 3.3(c). Part (c) follows from Theorems 3.3 and 4.5. �

Proof of Theorem 1.3. Part (a) follows from Theorems 3.2 and 3.3, and Part
(b) follows from Theorems 4.2 and 4.4. �
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