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Abstract. We find new family invariants for group isoclinism, and also
explore weak isoclinism.

1. Introduction

Isoclinism is an equivalence relation for groups that was introduced by Hall
[4], and is widely used in the group theory literature. The isoclinism equiva-
lence class containing a given group G is called the family of G.

There are many known family invariants, i.e. properties possessed by all
members of a family F if they are possessed by any one member of F . The
isomorphism type of the commutator subgroup G′ of a group G is a family
invariant, but that of the center Z(G) is not. Lescot [6, Lemma 2.8] showed
that the order of G′∩Z(G) is a family invariant. Here we strengthen that result
by showing that the isomorphism type of G′ ∩ Z(G) is a family invariant.

Theorem 1.1. If the groups G1 and G2 are isoclinic, then G′1 ∩Z(G1) and
G′2 ∩ Z(G2) are isomorphic.

Let 1 ≤ iAb(G) ≤ ∞ be the minimal index of an abelian subgroup in a group
G. Desmond MacHale conjectured that iAb(G) is a family invariant, and we
show that this is indeed true.

Proposition 1.2. If the groups G1 and G2 are isoclinic, then iAb(G1) =
iAb(G2).

After some preliminaries in Section 2, we prove the above results in Section 3.
In Section 4, we compare isoclinism with what we call weak isoclinism.

2. Preliminaries

Throughout the remainder of the paper, G is always a group. We use mostly
standard notation: eG is the identity of G, H ≤ G means that H is a subgroup
of G, |G| is the order of G, (G : H) = |G|/|H| is the index of H ≤ G, [x, y] =
x−1y−1xy is a commutator, G′ is the commutator subgroup of G (generated
by all commutators in G), Z(G) is the center of G, and we call G/Z(G) the
central quotient group of G. We write G×H for the direct product of groups
G,H, and G ≈ H indicates that G and H are isomorphic groups.
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We write Cn for the cyclic group of order n, and Dn for the dihedral group
of even order n ≥ 3. For every other explicitly mentioned group, we use the
GAP ID: specifically, Gp(n,m) denotes the group with GAP ID (n,m). Some
computations in this paper were made using GAP; for more on GAP, see [3].

For the definition of isoclinism, we use G×2 as an alternative notation for
the set G×G; here, the group structure of G×G is irrelevant. If φ : G→ H,
then φ×2 : G×2 → H×2 is the natural product map.

Since [g1, g2] = [g1z1, g2z2] for all g1, g2 ∈ G and all z1, z2 ∈ Z(G), the
commutator map induces a natural map

κG : (G/Z(G))×2 → G′

(g1Z(G), g2Z(G)) 7→ [g1, g2] .

Definition 2.1. Let G,H be groups. We say that (φ, ψ) is a weak isoclinism
from G to H if φ : G/Z(G) → H/Z(H) and ψ : G′ → H ′ are isomorphisms.
If, additionally, the diagram in Figure 1 commutes, we say that (φ, ψ) is an
isoclinism from G to H.

Isoclinism and weak isoclinism define equivalence relations, and we refer to
the equivalence class of G under (weak) isoclinism as the (weak) family of G.
A finite group is a (weak) stem group if it is of minimal order in its (weak)
family.

We write G ∼ H if G is isoclinic to H. A readily verified example of
isoclinism that we need is that G ∼ G× A whenever A is an abelian group.

(G/Z(G))×2
φ×2

≈
//

κG

��

(H/Z(H))×2

κH

��

G′
ψ

≈
// H ′

Figure 1. Isoclinism

Many group properties are (weak) family invariants, i.e. properties possessed
by all members of a (weak) family F if they are possessed by any one member
of F . It is immediate from the definition that the isomorphism types of G′

and G/Z(G) are weak family invariants. Because weak isoclinism preserves
the isomorphism types of G′ and G/Z(G), it is also trivial that solvability and
nilpotency are weak family invariants. In fact, derived length l and nilpotency
class c are also weak family invariants under the restrictions l ≥ 2 and c ≥ 2.
(Note that we need these restrictions on l and c because the trivial group is
isoclinic to all other abelian groups.)
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Less trivially, if k(L) is the number of conjugacy classes in a group L, then
k(G)/|G| = k(H)/|H| whenever G and H are isoclinic finite groups; see, for
instance, [6, Lemma 2.4]. However, k(G)/|G| and k(H)/|H| might be differ-
ent if G and H are merely weakly isoclinic, as indicated by the examples in
Remark 4.3 below. A list of isoclinism invariants can be found in [5, 1.1.1].
For more on group isoclinism, see for instance [1].

3. Proofs

Proof of Theorem 1.1. Let (φ, ψ) be an isoclinism from G1 to G2. For i = 1, 2,
define the quotient map pi : Gi → Gi/Z(Gi) and, as in Section 2, define the
natural commutator map

κi : (Gi/Z(Gi))
×2 → G′i .

Since φ is a homomorphism, we have

p2(κ2(φ(X), φ(Y ))) = φ(p1(κG(X, Y ))) , X, Y ∈ G1/Z(G1) .

It now follows from the definition of isoclinism that

p2(ψ(κ1(X, Y ))) = φ(p1(κ1(X, Y ))) , X, Y ∈ G1/Z(G1) ,

or equivalently,

p2(ψ([x, y])) = φ(p1([x, y])) , x, y ∈ G1 .

Because p2, p1, ψ, and φ are all homomorphisms, we deduce that

(1) p2(ψ(u)) = φ(p1(u)) , u ∈ G′1 .
Using (1) and the definition of isoclinism, we see that for all u ∈ G′1 and
W ∈ G1/Z(G1),

κ2(p2(ψ(u)), φ(W )) = κ2(φ(p1(u)), φ(W ))

= ψ(κ1(p1(u),W )) .

Since ψ is injective, we deduce that for all u ∈ G′1 and W ∈ G1/Z(G1),

(2) κ1(p1(u),W ) = e1 ⇐⇒ κ2(p2(ψ(u)), φ(W )) = e2 ,

where ei is the identity of Gi.
The condition

∀W ∈ G1/Z(G1) : κ1(p1(u),W ) = e1

is easily seen to be equivalent to u ∈ Z(G1). Using also the surjectivity of φ,
it similarly follows that the condition

∀W ∈ G1/Z(G1) : κ2(p2(ψ(u)), φ(W )) = e2

is equivalent to ψ(u) ∈ Z(G2). Bearing in mind these two equivalences, it
follows from (2) that for u ∈ G′1,

u ∈ G′1 ∩ Z(G1) ⇐⇒ ψ(u) ∈ G′2 ∩ Z(G2) .
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Combining this last equivalence with the fact that ψ : G′1 → G′2 is an isomor-
phism, it follows that

ψ|G′
1∩Z(G1) : G′1 ∩ Z(G1)→ G′2 ∩ Z(G2)

is also an isomorphism. �

The proof of Proposition 1.2 will follow easily from the following lemma
taken from [2, 1.2]; see also [4, p. 134].

Lemma 3.1. Suppose (φ, ψ) is an isoclinism from G1 to G2. If Z(G1) ≤
H1 ≤ G1 and φ(H1/Z(G1)) = H2/Z(G2), then H1 ∼ H2. Consequently,
Φ(H1) := H2 defines a correspondence Φ : S(G1)→ S(G2), where S(Gi) is the
sets of subgroups of Gi containing Z(Gi), i = 1, 2.

Proof of Proposition 1.2. Let Φ : S(G1)→ S(G2) be as in Lemma 3.1. By the
Correspondence Theorem [7, I.5.5], Φ is index-preserving, i.e. (G2 : Φ(H)) =
(G1 : H) for all H ∈ S(G1). Suppose iAb(G1) < ∞, and let us choose an
abelian subgroup A1 such that (G1 : A1) = iAb(G1). Letting A2 := Φ(A1),
we have (G2 : A2) = iAb(G1). Moreover, A1 ∼ A2 and Z(A1) = A1, so
Z(A2) = A2 and A2 is abelian. Thus iAb(G2) ≤ iAb(G1) and, by virtue of the
fact that isoclinism is a reflexive relation, it follows that iAb(G2) = iAb(G1). �

Letting Φ : S(G1)→ S(G2) be as above, the Correspondence Theorem also
guarantees that a subgroup H1 ∈ S(G1) is normal in G1 if and only if Φ(H1)
is normal in G2. Letting 1 ≤ j(G) ≤ ∞ be the minimal index of an abelian
normal subgroup in a group G, we therefore deduce the following variant of
Proposition 1.2.

Proposition 3.2. If the groups G1 and G2 are isoclinic, then j(G1) =
j(G2).

4. Weak isoclinism

In this section, we explore the differences between weak isoclinism and the
formally stronger concept of isoclinism. We first show that the two concepts
are not equivalent, and that weak isoclinism does not preserve the index iAb(G)
of Proposition 1.2. We suspect that parts (a) and (c) of the following result are
known, but we do not have a reference, so we include proofs for completeness.

Theorem 4.1.

(a) There are weakly isoclinic groups G1 and G2 of order 64 that are not
isoclinic.

(b) Furthermore we can choose G1 and G2 in (a) so that iAb(G1) = 2 and
iAb(G2) = 4.

(c) If G1 and G2 are weakly isoclinic groups with prime power orders strictly
less than 64, then they are isoclinic.
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Proof. The proofs of (a) and (b) are straightforward using GAP. Let G1 =
Gp(64, 146) and G2 = Gp(64, 149). Then Gi/Z(Gi) ≈ D8×C2 and G′i ≈ C4×
C2 for i = 1, 2, so these two groups are weakly isoclinic. However iAb(G1) = 2
and iAb(G2) = 4. By Proposition 1.2, G1 and G2 cannot be isoclinic.

As for (c), it is clear that groups of prime power order for different primes
cannot be weakly isoclinic unless they are abelian, in which case they are
certainly isoclinic. Thus it suffices to consider nonabelian groups of prime
power order for each prime p separately. There are two nonabelian groups of
order 27, and they are known to be isoclinic. All other nonabelian groups of
prime power order less than 64 are 2-groups.

As mentioned in [4, p. 136], there are eight families containing groups of
order 2i for i ≤ 5. Each has a representative of order 32 (just take a direct
product of a stem group in the family with a suitable cyclic group). A GAP
computation shows that groups of order 32 have eight different isomorphism
types of central quotient groups, so there are at least eight weak families con-
taining such groups. Thus the number of weak families and the number of
families containing such groups must coincide, and a weakly isoclinic pair of
groups of order 32 must also be isoclinic. �

Remark 4.2. It may well be that Theorem 4.1(c) could be strengthened to
state that weakly isoclinic groups of order less than 64 are necessarily isoclinic.
However, isoclinism has been used mainly for groups of prime power order, and
there appears to be little written on the isoclinism classes for non-prime power
orders. Consequently, it would require a fair deal of calculation to investigate
such a stronger result.

Remark 4.3. We can prove Theorem 4.1(a) using other pairs of groups of
order 64. For instance, we could take G1 = D8 × D8 and G2 = Gp(64, 215).
As is well known, D8/Z(D8) ≈ C2 × C2, D

′
8 ≈ C2, and D8 has five conjugacy

classes. It follows that G1/Z(G1) ≈ (C2)
4 and G′1 ≈ C2×C2, and that G1 has

25 conjugacy classes. GAP reveals that G2 is weakly isoclinic to G1, but has
only 22 conjugacy classes. Since number of conjugacy classes divided by group
order is a family invariant, it follows that G1 and G2 are not isoclinic. However
iAb(G) = 4 for every group G of order 2j, j ≤ 6, with G/Z(G) ≈ (C2)

4 have
(as can be verified with GAP), so these groups cannot be used to show that
the weak isoclinism analogue of Proposition 1.2 fails.

We now show that the weak isoclinism analogue of Theorem 1.1 is false.

Theorem 4.4. There exist weakly isoclinic groups G1 and G2 of order 256
such that G′1∩Z(G1) and G′2∩Z(G2) are not isomorphic. There are no weakly
isoclinic groups of strictly smaller prime power orders with the same property.

Proof. GAP gives many pairs of groups with the desired properties. For in-
stance, we can take G1 := Gp(256, 3000) and G2 := Gp(256, 3300). Then
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Gi/Z(Gi) ≈ Gp(32, 34) and G′i ≈ C4 × C4 × C2 for i = 1, 2. However,
G′1 ∩ Z(G1) ≈ C4 × C2, while G′2 ∩ Z(G2) ≈ C2 × C2 × C2.

In view of Theorem 4.1, proving minimality requires only that we verify that
the phenomenon does not occur among groups of orders 64, 81, 128, 243, and
125, and GAP confirms this. �

Remark 4.5. Let us pause to explain how to use groups of order 2n for
n < 8 to construct non-minimal examples of weakly isoclinic groups G1, G2

such that G′1 ∩ Z(G1) and G′2 ∩ Z(G2) are non-isomorphic. The advantage of
doing this is that examining groups of order 2n for n < 8 involves considerably
less effort than examining the 56 092 groups of order 256 = 28.

GAP gives us the following twelve isomorphisms involving the groups Gi :=
Ki × Li for i = 1, 2, where K1 := Gp(64, 34), L1 := Gp(128, 437), K2 :=
Gp(64, 32), and L2 := Gp(128, 742):

K1/Z(K1) ≈ Gp(32, 6) , K ′1 ≈ C2 × C2 × C2 , K ′1 ∩ Z(K1) ≈ C2 ,

L1/Z(L1) ≈ Gp(32, 34) , L′1 ≈ C4 × C4 , L′1 ∩ Z(L1) ≈ C2 × C2 ,

K2/Z(K2) ≈ Gp(32, 6) , K ′2 ≈ C4 × C2 , K ′2 ∩ Z(K2) ≈ C2 ,

L2/Z(L2) ≈ Gp(32, 34) , L′2 ≈ C4 × C2 × C2 , L′2 ∩ Z(L2) ≈ C4 .

It is clear from the first and second columns above that G1 and G2 are weakly
isoclinic. However, the third column reveals that

G′1 ∩ Z(G1) ≈ C2 × C2 × C2 ,

G′2 ∩ Z(G2) ≈ C4 × C2 ,

so we are done.

Although the conclusion of Theorem 1.1 fails when we replace isoclinism
by weak isoclinism, we recover a true statement when we also weaken the
conclusion:

Proposition 4.6. If the groups G1 and G2 are weakly isoclinic, and |G′1| <
∞, then |G′1 ∩ Z(G1)| = |G′2 ∩ Z(G2)|.

Proof. Weak isoclinism implies that (G1/Z(G1))
′ ≈ (G2/Z(G2))

′. But by the
second isomorphism theorem,

(G1/Z(G1))
′ = (G′1Z(G1))/Z(G1) ≈ G′1/(G

′
1 ∩ Z(G1)) ,

and so G′1/(G
′
1 ∩ Z(G1)) ≈ G′2/(G

′
2 ∩ Z(G2)). Weak isoclinism also implies

that |G′1| = |G′2|, so the result follows. �

Remark 4.7. Coding most of the GAP-dependent statements in the proofs
of Theorems 4.1 and 4.4 was a triviality. The only exception was the computa-
tion of iAb(G), and the code used for that involved only a few lines. Specifically,
we first defined the index function:
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iAb := function(G)

local Cl, AbOrd;

Cl := ConjugacyClassesSubgroups(G);

AbOrd := Filtered(Cl, x -> IsAbelian(Representative(x)));

Apply(AbOrd, x -> Order(Representative(x)));

return Order(G)/Maximum(AbOrd);

end;;

The index iAb(G1), for instance, could then be computed by the function call

iAb(SmallGroup(64,146));

I wish to thank Desmond MacHale who posed the question that lead me to
investigate Theorem 1.1, and who also mentioned Proposition 4.6 to me.
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