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Abstract. We give new characterizations of the polynomials f(X) ∈ Z[X]
such that a unital ring R is necessarily commutative if f(R) = 0, or if f(R) ⊂
Z(R). We use these to characterize semigroups of polynomials under multipli-
cation that have similar properties.

1. Introduction

For certain polynomials f(X) with integer coefficients, the condition f(R) = 0
forces a ring to be commutative, in the sense that if f(x) = 0 for all x in a
ring R, then R is commutative. Sometimes even the weaker condition f(R) ⊂
Z(R)—meaning that f(x) lies in the center Z(R) for all x ∈ R—forces R to be
commutative. Characterizations of such polynomials for the condition f(R) = 0
are given in [5] and [1] (with the problem posed for all rings, and for unital rings,
respectively), and for the condition f(R) ⊂ Z(R) in [2] (both for all rings and for
unital rings).

In this paper, we are interested in semigroups S ⊂ Z[X] of polynomials where
the semigroup operation is multiplication. We call such semigroups polynomial
product semigroups. One might wonder if it is possible that all elements of a
polynomial product semigroup could consist only of such forcing polynomials.
This is a rather strong condition and for most variants of the problem we will see
that no such semigroups exist. However for one variant there are examples.

Section 2 contains preliminary material, and also handles the easy cases. Sec-
tion 3 begins with new characterizations of the polynomials f(X) such that
a unital ring R is necessarily commutative whenever f(R) = 0, or whenever
f(R) ⊂ Z(R). This enables us to characterize the one type of polynomial product
semigroup that actually exists. In the final section, we consider some examples.

2. Preliminaries

We begin by introducing some notation that we use throughout this paper.
We usually denote a formal polynomial as f(X) ∈ D[X] where D will always be
either Z or Zp for some prime p ∈ N. We write f for any associated function (on
D if D = Zp, or on some general ring R if D = Z). When evaluating f , we write
something such as f(m); this symbol “m” may be anything except “X”, the latter
being reserved for the formal variable. One exception to these conventions is that
whenever f(X) ∈ D[X] and G is a function defined on D[X], we will consistently
write G(f) in place of G(f(X)) for stylistic reasons.
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A polynomial f(X) ∈ Z[X] is primitive if the greatest common divisor of its
coefficients is 1.

For non-negative i ∈ Z, we define the coefficient maps ai : D[X] → D by
ai(f) = αi where f(X) =

∑n
j=0 αjX

j (and αj = 0 for j > n); we omit D in

this notation as it will always be understood. We also define the coefficient sum1

s(f) =
∑n

j=0 αj. If f(X) =
∑n

i=0 αiX
i ∈ D[X], we define its formal derivative

f ′(X) =
∑n

i=1 iαiX
i−1, i.e. ai−1(f

′) = iai(f) for all i ∈ N.

Whenever I is an ideal in D and φ : D → R := D/I is the natural quotient
map, we get an induced quotient map Φ : D[X]→ R[X] via the equations

Φ

(
n∑

i=0

αiX
i

)
=

n∑
i=0

φ(αi)X
i ,

and both φ and Φ are ring epimorphisms. We use this fact only for the special
case D = Z and R = Zp, where p is a prime, and we denote the natural quotient
maps by φp : Z → Zp and Φp : Z[X] → Zp[X]. As usual, we denote by Z∗p the
set of units in Zp, i.e. Z∗p = Zp \ {0}. As is well known, Xp −X ∈ Zp[X] equals∏

i∈Zp
(X − i).

Given a class F of (not necessarily unital) rings, we denote by C0(F) and
CZ(F) the sets of forcing polynomials f(X) ∈ Z[X] defined as follows:

C0(F) = {f(X) ∈ Z[X] : (R ∈ F and f(R) = 0) =⇒ R commutative} ,
CZ(F) = {f(X) ∈ Z[X] : (R ∈ F and f(R) ⊂ Z(R)) =⇒ R commutative} .

For these definitions, we allow the polynomials f(X) ∈ Z[X] to have nonzero
constant term only if F is a class of unital rings, since otherwise f(R) makes
no sense. In fact, we will consider only two choices of F : F = R, the class of

all (not necessarily unital) rings, and F = R̃, the class of all unital rings. We
refer to polynomials in CZ(F) and C0(F) as Z-polynomials and C-polynomials,
respectively, if F = R, and as Z-unital polynomials and C-unital polynomials,

respectively, if F = R̃.

Note that the condition f(R) = 0 implies in particular that f(0) = 0. It follows

that the condition f(R) = 0 for f(X) =
∑n

i=0 αiX
i and R ∈ R̃ can be split into

two separate conditions: α01 = 0 (i.e. R has characteristic divisible by α0) and
g(R) = 0 where g(X) =

∑n
i=1 αiX

i. In particular if a0(f) = ±1, then f(R) = 0
only if R is the trivial ring. By contrast, f(R) = 0 for f(X) = 2 +X −X2 if and
only if R is a Boolean ring, and f(R) = 0 for f(X) = 3 +X −X3 if and only if R
is a ring of characteristic 3 for which X3 = X (and non-trivial rings of this type
exist, such as Z3[X]/(X2 − 1)).

Compared with [2], we have slightly changed the definition of CZ(F): we are

allowing functions with nonzero constant term if F = R̃. Such a term was omitted
previously because it does not affect whether or not a single polynomial f(X) lies

1Of course if f(X) ∈ Z[X], s(f) could be written as f(1) where 1 ∈ Z but, since we evaluate
such polynomials on general rings R, we prefer to write s(f) to remove the ambiguity. By con-
trast we never evaluate a polynomial g(X) ∈ Zp[X] on a ring, so we can (and do) unambiguously
write g(m) for any m ∈ Zp.



POLYNOMIAL PRODUCT SEMIGROUPS AND RING COMMUTATIVITY 3

in CZ(R̃). However a change in the constant term of a generator changes other
terms of products involving that generator, so we allow such constant terms here.

A well-known result of Jacobson [4, Theorem 11] shows that for n > 1, Xn−X
is a C-polynomial. Herstein [3] showed that if f(X) ∈ XZ[X] with a1(f) = ±1,
then f(X) is not just a C-polynomial, but also a Z-polynomial. We will refer
to any polynomial of the form f(X) = ±X +

∑n
i=0 αiX

i ∈ Z[X] as a Herstein
polynomial.

More generally, we have the following theorem. Here, (a) is the main result in
Laffey and MacHale’s paper [5], while (b) is Proposition 4 of [2].

Theorem A. Let f(X) ∈ Z[X].

(a) f(X) is a C-polynomial if and only if f(X) is either a Herstein polynomial,
or f(X) satisfies the following set of three conditions: a1(f) = ±2, a2(f)
is odd, and

∑n
i=2 ai(f) is odd.

(b) f(X) is a Z-polynomial if and only if it is a Herstein polynomial.

We next define some families of conditions indexed by a prime p ∈ N that we
will need. Let

bp,j(f) =
∑

1≤i≤n
i ≡ j (mod p−1)

iai(f)

cp,j(f) =
∑

0≤i≤n
i ≡ j (mod p−1)

ai(f)


, 0 ≤ j < p− 1 ,

and then define the sets

Sp(f) := {a0(f), a1(f)} ∪ {bp,j(f), cp,j(f) | 0 ≤ j < p− 1} ,
Tp(f) := {a1(f)} ∪ {bp,j(f) | 0 ≤ j < p− 1} ,
Up(f) := {a0(f)} ∪ {cp,j(f) | 0 ≤ j < p− 1} = Sp(f) \ Tp(f) .

We say that f(X) ∈ Z[X] satisfies the Sp condition if Sp(f) contains at least one
non-multiple of p. The Tp and Up conditions are defined analogously. The Sp and
Tp conditions were used to characterize C-unital and Z-unital polynomials in [1]
and [2] (see below), while the Up condition will be important in Section 3.

Combining Theorems 1 and 2 of [1], we get the following characterization of
C-unital polynomials.

Theorem B. The following conditions are equivalent for f(X) ∈ Z[X]:

(a) f(X) ∈ C0(R̃);
(b) f(X) satisfies the Sp condition for all primes p ∈ N;
(c) f(X) is primitive and it satisfies the Sp condition for all primes p ≤ n/2

that divide a1(f).

The following analogous characterization of Z-unital polynomials is a combi-
nation of Theorems 1 and 5 of [2].

Theorem C. The following conditions are equivalent for f(X) ∈ Z[X]:

(a) f(X) ∈ CZ(R̃);
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(b) f(X) satisfies the Tp condition for all primes p ∈ N;
(c) f(X) is primitive and it satisfies the Tp condition for all primes p ≤ n that

divide a1(f).

For brevity, we call a polynomial product semigroup S a forcing semigroup if
S ⊂ C0(F) or S ⊂ CZ(F). There are potentially four types of forcing semigroups

of interest to us: F could be R or R̃, and “forcing” could mean that S ⊂ C0(F)
or that S ⊂ CZ(F). We consider all four situations, and show that there are only
examples of one type.

We already have characterizations of C0(F) and CZ(F), so we focus on charac-
terizing forcing semigroups in terms of conditions on the generators. Consequently
we make the following definitions.

C0(F , prod) = {G ⊂ Z[X] | G 6= ∅ and 〈G〉 ⊂ C0(F)} ,
CZ(F , prod) = {G ⊂ Z[X] | G 6= ∅ and 〈G〉 ⊂ CZ(F)} .

Above 〈G〉 means the polynomial product semigroup with generator set G.

We finish this section by showing that forcing semigroups fail to exist in three
of the four cases that interest us. We start with the rather trivial fact that there
are no polynomial product semigroups of C-polynomials (or Z-polynomials).

Proposition 2.1. C0(R, prod) = CZ(R, prod) = ∅.

Proof. Since trivially CZ(R, prod) ⊂ C0(R, prod), it suffices to prove that C0(R, prod)
is empty. By Theorem A(a), 〈G〉 ⊂ C0(R) would imply that each f(X) ∈ 〈G〉
had the form f(X) :=

∑n
i=1 aiX

i ∈ Z[X], where a1 ∈ {±1,±2}. If a generator
f(X) is of this form, then certainly (f(X))2 is not. �

Polynomial product semigroups of Z-unital polynomials also fail to exist. This
will follow immediately from the following simple lemma.

Lemma 2.2. If f(X) =
∑n

i=0 αiX
i ∈ Z[X], and p ∈ N is a prime, then (f(X))p =

g(X) +
∑n

i=0 α
p
iX

ip, where the coefficients of g(X) are all divisible by p.

Proof. Let (f(X))p =
∑pn

i=0 βiX
i. Any given coefficient βi is the sum of mixed

terms plus possibly an unmixed term, where the possible unmixed term is that of
the form αp

j (occurs only if i = pj) and all other contributions can be gathered
into mixed terms with coefficients of the form(

p

j1, . . . , jm

) m∏
k=1

(α′k)jk ,

where
∑m

k=1 jk = p and α′k = αjk for some set of distinct indices 1 ≤ jk < p,
1 ≤ k ≤ m, m ≥ 2. Because p is prime, all such multinomial factors are divisible
by p, and the result follows. �

Proposition 2.3. CZ(R̃, prod) = ∅.

Proof. Suppose ∅ 6= G ⊂ Z[X]. Let f(X) ∈ G, where f(X) =
∑n

i=0 αiX
i. By

Lemma 2.2, (f(X))p = g(X) + h(X), where g(X) is a polynomial all of whose
coefficients are divisible by p, and ai(h) is nonzero only when p | i. The Tp
condition fails for any such polynomial g(X) + h(X), so G /∈ CZ(R̃, prod) by
Theorem C. �
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3. Main results

We begin by showing that the conditions Sp, Tp, and Up can be character-
ized in terms of Zp[X] divisibility. We then apply this result to characterize the
polynomial product semigroups of C-unital polynomials.

Theorem 3.1. Let f(X) ∈ Z[X].

(a) f(X) satisfies the Sp condition if and only if (Xp − X)2 does not divide
fp(X).

(b) f(X) satisfies the Tp condition if and only if Xp−X does not divide f ′p(X).
(c) f(X) satisfies the Up condition if and only if Xp−X does not divide fp(X).

Proof. We first prove (c). Suppose that f(X) does not satisfy the Up condition.
Now f(0) = a0(f) is divisible by p, so fp(0) = φp(a0(f)) = 0. Suppose m ∈ Z∗p. By

Fermat’s Little Theorem, mp−1 = 1, and so mj = mj′ whenever (p− 1) | (j − j′).
Using the fact that φp is an additive homomorphism, it follows that

fp(m) =

p−2∑
j=0

φp(cp,j(f))mj .

Because f(X) does not satisfy the Up condition, φp(cp,j(f)) = 0 for all 0 ≤ j <
p− 1, and so fp(m) = 0 for all m. Since Xp −X =

∏
i∈Zp

(X − i), it is clear that

Xp −X divides fp(X).

Conversely suppose (Xp −X) | fp(X). Certainly a0(fp) = 0 and so p | a0(f).
Let

g(X) :=

p−2∑
j=0

φp(cp,j(f))Xj .

If m ∈ Z∗p, then again by Fermat’s Little Theorem, fp(m) = g(m). But fp(m) = 0
and so g(m) = 0. Thus g(X) is a polynomial of degree at most p− 2 with at least
p− 1 distinct roots. Consequently we must have φp(cp,j(f)) = 0 for all j, and so
f(X) fails to satisfy the Up condition.

Next note that the Tp condition for f(X) is just the Up condition for f ′(X),
and that Φp(f

′) = f ′p. Thus by (c), f(X) satisfies the Tp condition if and only if
Xp −X does not divide f ′p(X).

Finally f(X) fails to satisfies the Sp condition if and only if f(X) fails to satisfy
both the Tp and Up conditions, and so if and only if Xp −X divides both fp(X)
and f ′p(X). If (Xp − X)2 divides fp(X), then the product rule for the formal
derivative implies that Xp − X divides f ′p(X). Suppose instead that Xp − X

divides fp(X), but that (Xp−X)2 does not divide fp(X). Then for some m ∈ Zp,
we have fp(X) = (X −m)g(X), where g(X) is not divisible by X −m. Again by
the product rule, we have f ′p(X) = g(X) + (X −m)g′(X), so f ′p(m) = g(m) 6= 0,

and consequently f ′p(X) is not divisible by X−m. We have shown that (Xp−X)2

divides fp(X) if and only if fp(X) and f ′p(X) are both divisible by Xp −X, and
so if and only f(X) fails to satisfy the Sp condition. �
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Using Theorem 3.1 and Theorem B, it is now easy to characterize polynomial
product semigroups of C-unital polynomials. We record this as a corollary, and
leave the easy proof to the reader.

Corollary 3.2. Let G be a nonempty subset of Z[X], and let S := 〈G〉. Then the
following are equivalent:

(a) G ∈ C0(R̃, prod).
(b) For all primes p ∈ N, there exists an integer m with 0 ≤ m < p such that

p 6 | f(m) for all f(X) ∈ G.
(c) Finite products of distinct generators satisfies the Up condition for all

primes p ∈ N.
(d) Products of at most p distinct generators satisfies the Up condition for all

primes p ∈ N.

If G = {f1(X), . . . , fk(X)} and N =
∑k

i=1 deg(fi), then the above are also equiv-
alent to the following condition.

(e) For all primes p ≤ N , there exists m ∈ Zp such that
∏k

i=0 Φp(fi)(m) 6= 0.

The main result in Herstein’s paper [3] is stronger than we have earlier in-
dicated. In fact it states that a (not necessarily unital) ring R is necessarily
commutative if for each x ∈ R there exists a Herstein polynomial fx(X) such
that fx(x) ∈ Z(R). It would be interesting to obtain a similar characterization
for polynomial product semigroups although, in view of Proposition 2.3, it should
involve the condition fx(x) = 0 rather than fx(x) ∈ Z(R). We state a partial
result in this direction.

Theorem 3.3. The following are equivalent for a polynomial product semigroup
S.

(a) If R is a ring, and for each x ∈ R there exists fx(X) ∈ S such that
fx(x) = 0 and fx(X) = fx+1(X), then R is necessarily commutative.

(b) All elements of S are C-polynomials.
(c) For each prime p ∈ N, every finite product of at most p distinct generators

of S satisfies the Up condition.

Proof sketch. Corollary 3.2 tells us that (b) and (c) are equivalent, and trivially
(a) implies (b), so it suffices to prove that (c) implies (a). To prove this, we first
review the proof in [1] that (c) implies (b). First, by the discussion in Section 2
(immediately after the definition of C-unital polynomials), it suffices to show this
under the assumption that a0(f) = 0. The proof then reduces to showing that
R is necessarily commutative under the assumptions that R has characteristic a
power pk of a prime p, and f(R) = 0 for some f(X) ∈ XZ[X] satisfying the Sp

condition.

Since pkR = 0, we may treat polynomials g(X) for which g(R) = 0 as elements
of Zpk [X] rather than Z[X]. A Herstein polynomial in this setting is a polynomial
g(X) ∈ Zpk [X] such that a1(g) = ±1: such a g(X) has the property that if
g(R) = 0 for a ring R of characteristic pk, then R is necessarily commutative.

We showed in [1] that the Sp condition implies that for some i ∈ Zpk , either
f(X + i) or (X + i)f(X + i) is of the form cg(X), where g(X) is a Herstein
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polynomial and the constant c is a Zpk unit. It then followed that g(R) = 0, and
so R was commutative.

In our setting, the fact that fx(X) = fx+1(X) for all x ∈ R means that
fx(X) = fx+i(X) for all x ∈ R and i = i ·1 ∈ R. The argument then goes through
unchanged; note that the reduction to prime power characteristic also requires
this assumption since it uses the fact that fi(X) is independent of i = i · 1 ∈ R.
Thus for all x ∈ R there exists a Herstein polynomial gx(X) such that gx(x) = 0,
which implies that R is commutative. �

4. Examples

Here we consider polynomial product semigroup examples relevant to Corol-
lary 3.2. In all cases, (e) refers to Corollary 3.2(e).

Example 4.1. For p = 2, the Up condition is equivalent to the statement that
either a0(f) is odd for all generators f(X), or the coefficient sum s(f) is odd for all
generators f(X). Thus if |a0(f)| is a power of 2 for all f(X) ∈ G, and we rule out

the uninteresting case2 where |a0(f)| = 1 for all f(X) ∈ G, then G ∈ C0(R̃, prod)
if and only if s(f) is odd for all f(X) ∈ G.

Our next example makes it clear that unlike the case p = 2, it is not sufficient
to verify that generators satisfy the Up condition when p > 2.

Example 4.2. Let G = {f(X), g(X)}, where f(X) = 4X − X2 and g(X) =
4X + X2. Then the case p = 2 of (e) holds since both coefficient sums are odd.
Also, both f(X) and g(X) satisfy the U3 condition: f3(X) = X−X2 and g3(X) =
X +X2, so f3(−1) 6= 0 and g3(1) 6= 0. However Φ3(fg)(X) = (X −X2)(X +X2)

is divisible by X3 −X, so the case p = 3 of (e) fails, and G /∈ C0(R̃, prod).

For one-parameter semigroups, the characterization is very simple.

Example 4.3. G = {f(X)} ∈ C0(R̃, prod) if and only if f(X) is a primitive
polynomial and f(X) satisfies the Up condition for each prime p ≤ deg(f). For

instance, if f(X) is a primitive quadratic then {f(X)} ∈ C0(R̃, prod) if and only if
either a0(f) or s(f) is odd. In the case of a primitive polynomial of degree at most
4, the same condition is necessary but for a condition that is also sufficient we
additionally need that not all the numbers in {a0(f), a1(f) +a3(f), a2(f) +a4(f)}
are divisible by 3.

Example 4.4. Consider G := {f(X), g(X)}, f(X) = 2X + X2 and g(X) =
X +X2 +X3. We need to verify (e) for all primes p ≤ 5. First (e) holds for p = 2
because both coefficient sums are odd. Defining h(X) := f(X)g(X), we see that

h(X) = 2X2 + 3X3 + 3X4 +X5 .

Now U3 = {0, 0+2+3, 0+3+1} and U5 = {0, 0+3, 0+1, 2, 3} include non-multiples

of 3 and 5, respectively. Thus G ∈ C0(R̃, prod).

2This is uninteresting because it implies that |a0(g)| = 1 for all g(X) in the semigroup. Thus
if g(R) = 0, and in particular g(0) = 0, then 1 = 0 in R, and so R is the trivial ring.
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