
Finite rings with large anticommuting probability

S.M. BUCKLEY, D. MACHALE, AND YU. ZELENYUK

Abstract. We investigate the set of values attained by Prac(R), the proba-
bility that a random ordered pair of elements in a finite ring R has zero Jordan
product. In particular, we find all possible values of Prac(R) in [15/32, 1].

1. Introduction

There has been much written on the possible values attained by the probability
that a random pair of elements in a finite group commute: see for instance [5],
[9], [7], [10], [12], [4], [6], [3], and [8]. The corresponding question for finite rings
was examined in [11] and [2]. In this paper, we examine the probability that a
random pairs of elements in a finite ring anticommute.

Let f(X, Y ) = aXY + bY X be a formal noncommutative polynomial in the
unknowns X and Y , where a, b ∈ Z. We use f as a symbol of the function
fR : R×R→ R, defined by fR(x, y) := axy + byx, on an arbitrary ring R. For
such a symbol f , and a ring R of finite cardinality, let

(1.1) Prf (R) :=
|{(x, y) ∈ R×R : fR(x, y) = 0}|

|R|2
,

where |S| denotes the cardinality of a set S. Whenever C is a class of finite rings,
we define the associated f -spectrum Sf (C) ⊆ Q ∩ (0, 1] by

Sf (C) := {Prf (R) | R ∈ C} .
We give Prf (R) and Sf (C) special terminology and notation in three important

cases: the commuting probability and commuting spectrum, Prc(R) and Sc(C),
correspond to f(X, Y ) := XY − Y X; the anticommuting probability and anti-
commuting spectrum, Prac(R) and Sac(C), correspond to f(X, Y ) := XY + Y X;
and the annihilating probability and annihilating spectrum, Prann(R) and Sann(C),
correspond to f(X, Y ) := XY .

The commuting spectrum was investigated in [2], where all sufficiently large
spectral values were given explicitly, both for the class Cfin of all finite rings and
for the class Cp of all rings of order a power of a given prime p. In [1], some
relationships between the various spectra were discussed: in particular, it was
shown that the annihilating spectrum of various classes of finite rings contains the
f -spectrum of the same class for each f as above. However [1] does not discuss
any particular values that lie in any of these spectra, so in this paper we carry
out such an investigation for anticommuting spectra (and annihilating spectra for
commutative rings), although some of our results apply equally well to f -spectra
for a general symbol f .
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We use three parametrized proportions in our main results:

α(k; p) :=
pk + p− 1

pk+1
, δ(p) :=

3p− 2

p3
, ε(p) :=

2p3 + p2 − 3p+ 1

p5
,

where p is a prime and k ∈ N. For comparison with the results of [2], we also
define γ(p) := (p3 + p2 − 1)/p5. We will see in Section 2 that for all primes p and
k ∈ N,

(1.2) γ(p) < ε(p) < δ(p) ≤ 1

p
< α(k + 1; p) < α(k; p) ,

with all inequalities being strict for p > 2.
Let Cfin and Cp be as above. In [2], all elements of Sc(Cp) ∩ [γ(p), 1] and

Sc(Cfin) ∩ [γ(2), 1] are explicitly listed for all primes p. In the following theorem,
we explicitly list all elements of Sac(Cp) ∩ [ε(p), 1] and Sac(Cfin) ∩ [ε(2), 1]; note
that ε(2) = 15/32.

Theorem 1.1. For all primes p,

Sac(Cp) ∩ [ε(p), 1] = {α(k; p) | k ∈ N} ∪
{

1, α(1; p)2, δ(p), ε(p)
}
.

The above values are all distinct except for the equation α(1; 2)2 = α(3; 2). More-
over,

Sac(Cfin) ∩ [ε(2), 1] = {α(k; 2) | k ∈ N} ∪ {1, 5/9, 1/2, 15/32} .

Comparing the above result with [2, Theorem 1], we see that

Sc(Cp) ∩ [ε(p), 1] = {α(2k; p) | k ∈ N} ( Sac(Cp) ∩ [ε(p), 1] ,

Sc(Cfin) ∩ [ε(2), 1] = {α(2k; 2) | k ∈ N} ( Sac(Cfin) ∩ [ε(2), 1] .

Not only are there more large anticommuting values than large commuting
values, but the isomorphism types associated with large anticommuting values
are considerably more diverse than those associated with large commuting values;
see Theorem 4.6. It is because of this extra complexity that we chose a larger
cutoff value than that employed in [2]; note that γ(2) = 11/32 but ε(2) = 15/32.

After some preliminaries in Section 2, we characterize all values of Prf (R) for
p-rings R (meaning rings in Cp) satisfying |f(R,R)| = p in Section 3; here f(R,R)
is the additive subgroup of R generated by all elements of the form f(x, y),
x, y ∈ R. There are two key ideas introduced in that section to accomplish this
characterization: reductions to rings of a simpler form (split and canonical forms),
and an augmentation process that produces a sequence of values of Prf(·) once
we find a single value Prf(R) < 1. Split form also allows us to prove that the
anticommuting spectrum for all finite rings, or all p-rings, equals the annihilating
spectrum for all finite commutative rings, or all commutative p-rings, respectively.

Finally in Section 4, we prove Theorem 1.1. We also list there all possible
isomorphism types of canonical-form commutative p-rings R with the property
Prann(R) ≥ ε(p).
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2. Preliminaries

Rings and algebras are always assumed to be associative, but are not necessarily
unital. The classes Cfin and Cp are as defined in the introduction; we call a ring in
Cp a p-ring. We also define Cc to be the class of all finite commutative rings, and
Cac to be the class of all finite anticommutative rings. If R is a ring, then R2 will
always denotes the additive subgroup generated by all products xy, rather than
the cartesian product which will be denoted R×R. A null ring is a ring R with
R2 = 0.
Zn denotes the ring of integers mod n, Z∗n is the set of units in Zn, and Cn

denotes a cyclic group of order n. The p-adic valuation νp : Z\{0} → {0, 1, 2, . . . }
is defined by νp(n) = k whenever n = ipk, i, k ∈ Z, and i is not divisible by the
prime p. If S is a subset of a vector space V , we write spanS for the subspace
spanned by S; usually V will be the additive group of a Zp-algebra.
f(X, Y ) := aXY + bY X is a symbol, with a, b ∈ Z. Given a symbol f and a

ring R, fR : R × R → R is defined by fR(x, y) := axy + byx. Suppose R is a
ring. For x ∈ R, we write f(x,R) for the additive subgroup {fR(x, y) | y ∈ R}
of (R,+), and f(R,R) is the additive subgroup generated by fR(x, y), x, y ∈ R.
The right f -annihilator of x ∈ R is

r-Annf,R(x) := {y ∈ R | fR(x, y) = 0} ,

and the right f -annihilator of R is

r-Annf (R) := {z ∈ R | fR(x, z) = 0 for all x ∈ R} .

The left-handed variants l-Annf,R(x) and l-Annf (R) are defined analogously. The
(two-sided) f-annihilator of R is Annf(R) := r-Annf(R) ∩ l-Annf(R). These
various annihilators are not in general ideals, so R/r-Annf(R), R/ l-Annf(R),
R/Annf (R) always refer to factor groups of (R,+). If f(X, Y ) = XY , we drop
references to f in the above terminology and notation, so r-AnnR(x) is the right
annihilator of x ∈ R, Ann(R) is the annihilator of R, etc.

We will need to deal with direct sums of rings, but also direct sums of abelian
groups, and sometimes the groups involved in the latter are additive groups of
associated rings. To distinguish between the two concepts, we write A⊕B for a
direct sum of rings, and A�B for a direct sum of abelian groups.

If a ring R equals R1 ⊕R2, then Prf (R) = Prf (R1) Prf (R2): this follows easily
from the fact that the kernel of fR is precisely the cartesian product of the kernels
of fR1 and fR2 . Thus Sf(C) is a monoid under multiplication, with 0 as an
accumulation point, whenever C is a class of finite rings closed under direct sums
that contains at least one commutative ring and at least one noncommutative
ring.

Since a finite ring is a direct sum of rings of prime power order, it follows that
the numbers in Sf (Cfin) are precisely the set of all products

∏n
i=1 ti, where n ∈ N,

ti ∈ Sf (Cpi), and each pi is prime. To understand the structure of Sf (Cfin)∩ [a, 1]
for any given 0 < a < 1, it therefore suffices to understand Sf (Cp) ∩ [a, 1] for all
primes p. For this reason, we mostly concentrate on investigating the spectra
Sf (Cp).

By considering the surjective group homomorphism fRx : R→ f(x,R), fx(y) =
f(x, y), we make the following observation; note that ker fRx = r-Annf,R(x).
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Observation 2.1. For each x in a ring R, the additive groups R/r-Annf,R(x)
and f(x,R) are isomorphic.

It thus follows easily from the definition of Prf (·) that

(2.1)

Prf (R) =
1

|R|2
∑
x∈R

| r-Annf,R(x)| = 1

|R|
∑
x∈R

1

|R/r-Annf,R(x)|

=
1

|R|
∑
x∈R

1

|f(x,R)|
.

Since r-Annf,R(x) = r-Annf,R(x+ z), z ∈ l-Annf (R), we can alternatively write

(2.2) Pr(R) =
1

|R/A|
∑

[x]∈R/A

1

|f(x,R)|
,

whenever A is a subgroup of (l-Annf(R),+); the sum above involves one term
for each coset [x] of A.

If R is a p-ring, it follows from (2.2) that

(2.3) Prf (R) =
∞∑
k=0

qk
pk

= (p− 1)
∞∑
k=0

Qk

pk+1
,

where qk is the proportion of cosets x + l-Annf(R) in R/ l-Annf(R) such that

|f(x,R)| = pk, and Qk :=
∑k

j=0 qj. Note that the series involving qk is really a
finite sum, but the one involving Qk is always an infinite series: in fact Qk = 1
for all sufficiently large k.

Related to the above discussion, we make the following useful observation.

Observation 2.2. If a, b, a′, b′ ∈ R, with a−a′, b−b′ ∈ Annf (R), then fR(a, b) =

fR(a′, b′), so fR induces a bilinear map f̃R : (R/Annf (R))× (R/Annf (R))→ R.

By the fundamental theorem of finite abelian groups, a finite abelian p-group
(A,+) can be decomposed as a direct sum

�m

i=1Cpki , k1 ≥ k2 ≥ . . . km > 0, m ≥ 0 ,

We call ki the i-th invariant of A; these invariants and m are uniquely determined.
A basis of A is a set {u1, . . . , um} ⊂ A, where each ui is a generator of the ith
summand Cpki (when we view A as an internal direct sum of such summands).
Equivalently, a basis of A is a spanning set of A with the property that a sum of
the form

∑m
i=1 niui, ni ∈ N, equals 0 only if each term niui equals 0.

Finally in this section, we justify (1.2). The inequalities 1/p < α(k + 1; p) <
α(k; p) are obvious, once we write α(k; p) = p−1 + p−k−1(p− 1). Next, δ(2) = 1/2,
and the inequality δ(p) < 1/p is clear for p ≥ 3. The inequality ε(p) < δ(p) holds
because

p5(δ(p)− ε(p)) = (3p3 − 2p2)− (2p3 + p2 − 3p+ 1) = (p− 1)3 > 0 ,

Finally, the inequality γ(p) < ε(p) holds because

p5(ε(p)− γ(p)) = (2p3 + p2 − 3p+ 1)− (p3 + p2 − 1) = (p+ 2)(p− 1)2 > 0 .

It is noteworthy also that ε(p) = α(1; p)α(2; p).
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3. Split form, canonical form, and augmentation

In this section, we discuss the concept of split- (and canonical-) form rings.
Split-form rings are easier to handle than general rings for Prf , and provide a
useful reduction because for every finite ring R, there is a split-form ring S with
Prf (R) = Prf (S). This concept is an outgrowth of the concept of canonical form
developed as part of the theory of isoclinism and isologism for certain universal
algebras in [1], but here we develop the concept without reference to that theory.

We then define a process of augmentation that allows us to use existing values of
Sf (Cp) to find new ones. In particular, we use this process for a general symbol f
to help us characterize the set of values of Prf (R) for rings satisfying |f(R,R)| = p.
Our augmentation process is related to that discussed in [2, Section 4]: in fact
the earlier process roughly corresponds to the case where f(X, Y ) := XY − Y X
and S is a split-form noncommutative ring of order p3 in the following definition.

3.1. Split form and canonical form.

Definition 3.1. A ring (or algebra) R has split form (with data (R1, R2)) if it
satisfies the following conditions:

(a) (R,+) is an internal direct sum of two abelian groups R1 and R2, and we
write elements x ∈ S as x1 + x2, where xi ∈ Ri, i = 1, 2.

(b) R1 has an associated multiplication that makes it into a ring, and such
that multiplication in R is then given by the equation

(x1 + x2)(y1 + y2) = 0 + x1y1 ∈ R2 .

Part (b) above can be rewritten as

(3.1) R2 ⊆ R2 ⊆ Ann(R) = l-Ann(R) ∩ r-Ann(R) .

It is sometimes useful to replace these containments by equations, if possible.

Definition 3.2. A split-form ring (or algebra) R with data (R1, R2) is said to
have canonical form if l-Ann(R) = r-Ann(R) = R2 = R2.

Given a split-form ring R, there may be more than one choice of data (R1, R2),
although the split-form data are uniquely defined if R has canonical form, as is
clear from (3.1).

We now describe the split construction which defines a split-type ring S asso-
ciated with a given ring R. First, (S,+) equals the internal direct sum of the
abelian groups S1 and S2, where S1 := (R,+) and S2 := R2. Writing a general
element of S as x = x1 + x2, xi ∈ Ai, i = 1, 2, we define multiplication on S by
the equation (x1 + x2)(y1 + y2) = 0 + x1y1 ∈ S2, where x1y1 is an R-product.

The utility of the split construction is tied to the fact that it preserves several
features of a ring R, as summarized below. These features imply that if we wish to
investigate Sf (C) for some class C of finite rings, then it often suffices to consider
split-form rings. In the following observations, f can be any symbol, and we use
the notation of the split construction above.

Observations 3.3.
(a) If R is a p-ring, or is commutative, or anticommutative, then S has the

same property.
(b) f(S, S) can be identified with f(R,R).
(c) A(S) = A(R)�S2, where A(·) stands for r-Annf (·), l-Annf (·), or Annf (·).
(d) S has split form, with data (S1, S2).
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(e) If R is finite, then Prf (R) = Prf (S) (as follows from (2.2)).
(f) S3 = 0.

We now give the canonical construction which defines a canonical-type ring S
associated with a split-form ring R with data (R1, R2) that satisfies l-Ann(R) =
r-Ann(R). Let (S,+) be the internal direct sum of S1 := R1/Ann(R1) and
S2 = R2, and we write a general x ∈ S as x1 + x2, where x1 ∈ S1 and x2 ∈ S2.
Multiplication on S is defined by the rule (x1 + x2)(y1 + y2) = 0 + u1v1 ∈ S2,
where u1v1 is an R-product, and u1, v1 ∈ R1 are such that x1 = u1 + Ann(R1)
and y1 = v1 + Ann(R1).

We now state some readily verified properties of the canonical construction of
S from a given split-form ring R, with notation as in the previous paragraph.

Observations 3.4.

(a) Observations 3.3 all hold (since canonical form is a special type of split
form).

(b) S2 = S2 = R2.
(c) Ann(S) = S2.
(d) S has canonical form, with data (S1, S2).
(e) The first invariant of (S,+) equals the first invariant of both S1 and S2.

In particular, S is a Zp-algebra if and only if S1 is an elementary p-group.

Split form is of interest for all rings and all symbols f , while canonical form
will mostly be of interest for f(X, Y ) = XY in the case of commutative and
anticommutative rings. However we will see that it will be useful by extension
when working with symbols of the form f(X, Y ) = a(XY ± Y X), a ∈ N.

Given a split-form ring R, we can always define a new split-form ring with the
same data R′ := (R,+, ◦), where x ◦ y := fR(x, y); associativity follows from the
split-form assumption. It is clear that Prann(R′) = Prf (R). Since split-form rings
give all possible values of Prf (·), we deduce that Sf (C) ⊆ Sann(C) if C = Cfin or
if C = Cp for some prime p; these containments were originally proved in [1].

The containment Sf(C) ⊆ Sann(C) might not be an equality: for instance,
Prann(Z2) = 3/4 /∈ Sc(Cfin) according to the results of [2] or [11]. However we do
have the following result.

Theorem 3.5. Suppose p is a prime.

(a) Sac(Cfin) = Sann(Cc) and Sac(Cp) = Sann(Cc ∩ Cp).
(b) Sc(Cfin) = Sann(Cac) and Sc(Cp) = Sann(Cac ∩ Cp).

Proof. We prove only (a) since the proof of (b) is similar. Since finite rings are
direct sums of rings of prime power order, it suffices to prove that Sac(Cp) =
Sann(Cc∩Cp). When f(x, y) = xy+yx, the new multiplication for x◦y := fR(x, y)
considered above is commutative (and associative as long as R has split form, as
mentioned above). Thus Sac(Cp) ⊆ Sann(Cc ∩ Cp).

Conversely, if R is a commutative p-ring for some odd prime p, then Prann(R) =
Prac(R

′), where R′ := (R,+, ∗) and x ∗ y = 2−1xy. Thus Sann(Cc ∩ Cp) = Sac(Cp)
for all p > 2.

This argument can be modified to work also for p = 2. First, we assume as we
may that the commutative ring R has split form with data (R1, R2). Write R2 as
an internal direct sum of groups Ui, 1 ≤ i ≤ m, where each Ui is a cyclic group
of order 2ki with generator ui. Let S2 be the abelian group which is an internal
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direct sum of cyclic groups Vi of order 2ki+1 with generators vi, 1 ≤ i ≤ m. We
define an injective homomorphism µ2 : R2 → S2 by the equations µ2(ui) = 2vi,
1 ≤ i ≤ m. Let S be the commutative split-form ring with data (R1, S2) whose
multiplication ∗S is defined by x ∗S y = µ2(xy) ∈ S2 for all x, y ∈ R1, where xy
is an R-product. Given x, y ∈ R1 we have xy = 0 in R if and only if x ∗S y = 0,
and so Prann(R) = Prann(S).

We choose a basis B := {u1, . . . , um} of R1. Since ui ∗S uj ∈ 2S2 for all
ui, uj ∈ B, we can define a function F : B ×B → S2 with the properties that
F (ui, uj) = F (uj, ui) and 2F (ui, uj) = ui ∗S uj for all 1 ≤ i, j ≤ m. Using
bilinearity, we then define a new multiplication ∗′S on S such that S ′ := (S,+, ∗′)
is a split-form commutative ring with data (R1, S2) satisfying ui ∗′ uj = F (ui, uj).
By bilinearity, we deduce that 2x ∗′ y = x ∗S y for all x, y ∈ S. It follows that
Prac(S

′) = Prann(S), as required. �

Remark 3.6. The above theorem makes canonical form useful for studying Prc

and Prac: we first transform the study of Prc(R) or Prac(R) for p-rings R to the
study of Prann(S) for anticommutative or commutative p-rings S, respectively.
By applying the canonical construction if necessary, we can then assume that S
has canonical form (bearing in mind Observations 3.4).

Remark 3.7. For the benefit of someone who has read [1], we mention that
replacing a ring R by a related canonical-form ring when investigating Prc or Prac

corresponds in the language of [1] to replacing R by a canonical-form ring for
isologism with respect to the variety of commutative or anticommutative rings,
respectively. Furthermore two rings are isologic in this sense if and only if the
associated canonical-form rings are isomorphic; see [1, Theorem 4.16(b)]. Thus
subsequent statements in this paper concerning isomorphism types of canonical-
form rings with certain properties can be reworded as statements about the
isologism types of rings with those properties.

We have the following variant of (2.2) for split-form rings R with data (R1, R2):

(3.2) Prf (R) =
1

|R1|
∑
x1∈R1

1

|f(x1, R)|
.

A split ring homomorphism h is a ring homomorphism between split-form rings
R, S such that h(Ri) ⊆ Si, i = 1, 2, where (R1, R2) and (S1, S2) are the data of R
and S, respectively. Split ring isomorphisms are then defined in the natural way.

3.2. Augmentation.

Definition 3.8. Suppose R and S are split-form rings with data (R1, R2) and
(S1, S2), respectively. Given an injective homomorphism µ : S2 → R2, we define
R⊕µ S, the augmentation of R by S (via µ), to be the unique ring T with the
following properties:

(a) (T,+) equals the internal direct sum R1 �R2 � S1.
(b) Write a general element x ∈ T as x = x1 +x2 +x3, where x1 ∈ R1, x2 ∈ R2,

and x3 ∈ S1, multiplication in T is defined by

(x1 + x2 + x3)(y1 + y2 + y3) = 0 + [x1y1 + φ(x3y3))] + 0 ∈ R2 .

It is convenient below to have an alternative notation for split-form data: if
R has data (R1, R2), we write ∆1(R) := R1 and ∆2(R) := R2. In the following
observations, we use the notation of Definition 3.8.
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Observations 3.9.

(a) If R, S are both p-rings, or commutative, or anticommutative, then R⊕µS
has the same property.

(b) T has split form with data (T1, T2), where T1 := R1 � S1 and T2 := R2,
and T has canonical form if R and S both have canonical form.

(c) Writing Annf (R) = R′1 �R2 and Annf (S) = S ′1 � S2 for some subgroups
R′1 of R1, and S ′1 of S1, we have Annf (T ) = R′1 �R2 � S ′1.

(d) f(T, T ) can naturally be identified with f(R,R) + f(S, S). If R has
canonical form, then T 2 can be identified with R2.

(e) If φR : R → R′ and φS : S → S ′ are split ring isomorphisms between
split-form rings R, S, then R ⊕µ S is isomorphic to R′ ⊕µ′ S ′, where
µ′ = φR ◦ µ ◦ (φ−1

S )|S′
2

and S ′2 = ∆2(S ′).
(f) If a ring R is an internal direct sum of split-form rings R′ and R′′, and

µ : S2 → ∆2(R′), then R⊕µ S is isomorphic to (R′ ⊕µ S)⊕R′′.
(g) Both R and S can naturally be viewed as ideals in T .

The proofs of the above observations are all rather obvious, and are left to the
reader. As we will see, the choice of µ can affect the isomorphism type of an
augmentation, so the definition of µ′ in Observation 3.9(e) is essential.

We now discuss the relationship between Prf(R ⊕µ S), and Prf(R),Prf(S),
concentrating mostly on the case where ∆2(S) is cyclic of order p, and R is a
p-group for some prime p; even here, the choice of µ is important. We begin with
a preparatory lemma.

Lemma 3.10. If S is a p-ring with |f(S, S)| = p, then Prf (S) = α(m; p), where
m = dimS/ l-Annf (S) > 0.

Proof. Since |f(S, S)| = p, S/ l-Annf(S) is necessarily a vector space over Zp of
positive dimension m. It follows from (2.2) that

Prf (S) =
1

|S/ l-Annf (S)|

(
pm − 1

p
+ 1

)
=
pm + p− 1

pm+1
= α(m; p) ,

as required. �

Remark 3.11. Given a ring S, it is clear that Prf(S) = Prf(S
op), where Sop

is the opposite ring with multiplication x ∗ y = yx, and yx is an S-product.
Since dimS/ l-Annf(S) determines Prf(S) in the above lemma, we see that
|S/ l-Annf(S)| = |S/ r-Annf(S)| under the assumption that |f(S, S)| = p. This
equation can fail if |f(S, S)| > p. For instance, let f(X, Y ) = XY , and let S be
the four-dimensional Zp-algebra with basis {u, v, w, z} where the only nonzero
products of basis elements are u2 = uv = w and v2 = vu = z. We see that S
has split form with data (S1, S2), where S1 := span{u, v} and S2 := span{w, z},
Moreover l-Annf (S) = S2 has dimension 2, while r-Annf (S) = span{u− v, w, z}
has dimension 3.
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We write Prf (R) = Pr+
f (R) + Pr−f (R), where

Pr+
f (R) =

1

|R|
∑
x∈R

µ(S2)⊆f(x,R)

1

|f(x,R)|
,

Pr−f (R) =
1

|R|
∑
x∈R

µ(S2)6⊆f(x,R)

1

|f(x,R)|
.

If R has split form with data (R1, R2), we could equivalently write

Pr+
f (R) =

1

|R1|
∑
x∈R1

µ(S2)⊆f(x,R)

1

|f(x,R)|
,

Pr−f (R) =
1

|R1|
∑
x∈R1

µ(S2)6⊆f(x,R)

1

|f(x,R)|
.

Lemma 3.12. Suppose R, S are split-form p-rings with data (R1, R2) and (S1, S2),
respectively, for some prime p. Suppose also that |S2| = p and dimS/ l-Annf (S) =
m ∈ N. With the notation of the previous paragraph, we have

(3.3) Prf (R⊕µ S) = Pr+
f (R) + Pr−f (R) Prf (S) = Pr+

f (R) + α(m; p) Pr−f (R) .

In particular, Prf (R) Prf (S) ≤ Prf (R⊕µ S) < Prf (R).

Proof. Let T := R ⊕µ S. As before, we write a general element x ∈ T as
x = x1 + x2 + x3, where x1 ∈ R1, x2 ∈ R2, and x3 ∈ S1. We say that x ∈ T is
of Type A if µ(S2) ⊆ f(x1, R), and of Type B otherwise. Since m > 0, we have
1 < |f(S, S)| ≤ |S2| = p, and so necessarily |f(S, S)| = p.

It is clear that f(x, T ) is the sum of the subgroups f(x1, R) and f(x3, S). Thus
if x is Type A, then f(x, T ) = f(x1, R), and the total contribution to Prf (T ) of
all Type A elements is precisely Pr+

f (R).

Suppose instead that x is of Type B. Now |f(x3, S)| is either p or 1, depending
on whether or not x3 ∈ l-Annf (S). In either case, we see that

(3.4) |f(x, T )| = |f(x1, R)| · |f(x3, S)| .
It follows that

1

|T |
∑
x3∈S3

1

|f(x1 + x2 + x3, T )|
=

1

|R| · |f(x1, R)|

(
1

|S3|
∑
x3∈S3

1

|f(x3, S)|

)

=
Prf (S)

|R| · |f(x1, R)|
=

α(m; p)

|R| · |f(x1, R)|
,

where the last equation follows from Lemma 3.10. Summing these terms over all
x ∈ R of Type B, we get α(m; p) Pr−f (R). Adding this to the Type A contribution,
we deduce (3.3). Finally, the inequalities

Prf (R) Prf (S) ≤ Prf (R⊕µ S) < Prf (R)

follow immediately from (3.3) because Pr−f (R) > 0. �
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We now prove a variation of Lemma 3.12 dealing with repeated augmentations
using the same homomorphism µ, under the natural embedding of R in R⊕µ S.
We denote the n-fold repeated augmentation as R ⊕nµ S, i.e. R ⊕0

µ S = R, and

R⊕nµ S = (R⊕n−1
µ S)⊕µ S for all n ∈ N.

Lemma 3.13. Suppose R, S are p-rings of split form with data (R1, R2) and
(S1, S2), respectively, for some prime p. Suppose also that |S2| = p and that
dimS/ l-Annf (S) = m for some m ∈ N. With the same notation as in Lemma 3.12,
we have

(3.5) Pr(R⊕nµ S) = Pr+
f (R) + α(mn; p) Pr−f (R) , n ∈ N .

Proof. Let Tn := R ⊕nµ S. We view (Tn,+) as an internal direct sum of R1,
R2, and n distinct copies of S1, and write a general element of T in the form
x = x1 + x2 +

∑n+2
i=3 xi, where xi+2 lies in the ith copy of S1. Arguing as in the

proof of Lemma 3.12, we see that if µ(S2) ⊆ f(x1, R), then f(x, T ) = f(x1, R),
and so the total contribution to Prf(T ) of all such points is Pr+

f (R). For all
other points, we see that if xi+2 ∈ l-Annf(S) for all i > 2 (a condition that

corresponds to
∑n+2

i=3 xi representing the zero element of �n+2
i=3 S/ l-Annf(S)),

then |f(x, T )| = |f(x1, R)|, and otherwise |f(x, T )| = p |f(x1, R)|. Consequently,
we see that

1

|Tn|
∑

(x3,...,xn+2)∈�n+2

i=3 S

1

|f
(∑n+2

i=1 xi, Tn|
) =

1

|R| · |f(x1, R)|

(
1

pmn
+

1

p
· p

mn − 1

pmn

)

=
α(mn; p)

|R| · |f(x1, R)|
,

and the lemma follows as before. �

Remark 3.14. Taking R = S in Lemma 3.13, it is readily verified that

Pr(S ⊕n−1
Id S) = α(mn; p) , n ∈ N ,

where Id : S2 → S2 is the identity map. Thus, once we find a single number
in the spectrum Sf(Cp) corresponding to a ring S as in the above lemmas, we
immediately get an infinite sequence of elements of Sf (Cp). For future reference,
we write Aug(S, n) = S ⊕n−1

Id S.

Theorem 3.15. Suppose f(X, Y ) = aXY + bY X is a symbol for some a, b ∈ Z,
and that at least one of a, b is nonzero. Suppose also that p is a prime. Then
the elements of Sf(Cp) obtained by rings R ∈ Cp for which |f(R,R)| = p are
precisely:

(a) all numbers of the form α(n; p), n ∈ N, if a+ b 6= 0;
(b) all numbers of the form α(2n; p), n ∈ N, if a+ b = 0.

Furthermore to achieve these values, it suffices to use commutative rings in (a),
and anticommutative rings in (b).

Proof. Suppose first that a+ b 6= 0, and let k = νp(a+ b). It is readily verified
that R := Zpk+1 satisfies |f(R,R)| = p and dimR/ l-Annf(R) = 1. This is
not a split-form ring but we can apply the split construction to get the com-
mutative ring S such that (S,+) is isomorphic to Cpk+1 � Cpk+1 and has basis
{u, v}, with multiplication being defined by u2 = v and uv = v2 = 0. Then
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|f(S, S)| = p and dimS/ l-Annf(S) = 1. By Lemma 3.10 and Remark 3.14,
we have Prf(Aug(S, n)) = α(n; p) for all n ∈ N, and no other values of Prf(R)
can occur for p-rings R satisfying |f(R,R)| = p. Since S is commutative, so is
Aug(S, n).

It remains to consider f(X, Y ) := a(XY − Y X), a ∈ N; in this case, we have
l-Annf(S) = r-Annf(S). Let k = νp(a) and assume p > 2. As an abelian group,

we take (S,+) to be �3
i=1Cpk+1 , with basis B := {u, v, w}. Multiplication is

defined by taking uv = −vu = w, and xy = 0 for all other pairs (x, y) of basis
elements. It is readily verified that S is an anticommutative split-form Zp-algebra
with data (S1, S2), where S1 is the additive group generated by u and v, and S2 the
additive group generated by w. Also f(S, S) is generated by pkw, so |f(S, S)| = p.
Since Annf (S) is generated by pku, pkv, and w, we have |S/Annf (S)| = p2. Thus
by Lemma 3.10, we have Prf(S) = α(2; p), and so Sf(Cp) contains α(2n; p) for
all n ∈ N. Since S is anticommutative, so is the augmented ring Aug(S, n) that
gives rise to α(2n; p) for all n ∈ N.

When p = 2, this construction needs to be tweaked. We instead take (S,+)
to be ⊕3

i=1C2k+2 . Then the rest of the proof is as before, except that f(S, S) is
generated by 2k+1w, and Annf (S) is generated by 2k+1u, 2k+1v, and w.

Suppose conversely that |f(R,R)| = p for some p-ring R. Without loss of
generality, R has split form with data (R1, R2). We first define a new ring R′,
where (R′,+) = (R,+) and the multiplication ◦ of R′ is defined by x ◦ y =
f(x, y). Then R′ is also a split-form ring with data (R1, R2), and by construction
Prann(R′) = Prf(R). Because of the form of f , R′ is anticommutative and
r-Ann(R′) = l-Ann(R′). We now carry out the canonical construction to get an
anticommutative canonical-form Zp-algebra S with data (S1, S2), where S1 =
R1/Ann(R1), S2 = (R′)2, and Prann(S) = Prann(R′).

To finish the proof of (b), it suffices by Lemma 3.10 to prove that dimS1 is
even. This amounts to the claim that if S is a finite-dimensional anticommutative
canonical-form Zp-algebra with data (S1, S2) such that dimS2 = 1, then S1 has
even dimension. For the sake of contradiction, we assume that this is false, and
that dimS1 is minimal for such a counterexample.

Because S2 is nontrivial, we can select nonzero u, v ∈ S1 such that uv 6= 0. Since
S is anticommutative, u and v are non-collinear. Moreover, uS = vS = S2 is a
vector space of dimension 1, so AnnS(u) and AnnS(v) both have codimension 1 in
S. Since v ∈ AnnS(v) \ AnnS(u), we see that AnnS(u) and AnnS(v) are distinct,
and U := AnnS(u) ∩ AnnS(v) has codimension 2. It is also clear that U is of the
form U1 �S2 for some subspace U1 of S1. Neither u nor v lie in U1 since each fails
to annihilate the other. It follows that u and U generate AnnS(u), that v and U
generate AnnS(v), and that u, v, and U generate S. Thus dimU = dimS − 2.

We are done if dimS = 2, so suppose dimS > 2, and thus U is a nontrivial
split-form Zp-algebra. Since U1 ⊂ S1, wS1 is nontrivial for all nonzero w ∈ U1.
But U annihilates u and v, so in fact wU must be nontrivial. It follows that
U2 = S2, and that Ann(U) = S2. Thus U has canonical form and it satisfies the
same assumptions as S, with data (U1, S2). Since dimU < dimS, dimU1 must
be even. Now dimS1 = dimU1 + 2, and the claim follows. �

As previously claimed, the choice of µ can affect the isomorphism type of R⊕µS
even if |∆2(S)| = p. We now verify this fact by giving an example where the
choice of µ affects the annihilating probability of the augmented ring.
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Proposition 3.16. For each prime p, there exist canonical-type Zp-algebras R
and S, with dimR = 5, dimS = 2, and dim ∆2(S) = 1 such that Prann(R⊕µ S)
can take on two distinct values depending on the choice of µ.

Proof. Let R be the Zp-algebra with basis {u1, u2, u3, z1, z2}, where u2
1 = u2

2 =
z1, u

2
3 = z2, and all other products of basis elements are zero, and let S be

the subalgebra of R with basis {u1, z1}. It is readily verified that R and S
both have canonical type with data (R1, R2) and (S1, S2), respectively, where
R1 := span{u1, u2, u3}, R2 := span{z1, z2}, S1 := span{u1}, and S2 := span{z1}.
Moreover it is clear that span{u1, u2, z1} is isomorphic to Aug(S, 2), and so R is
isomorphic to Aug(S, 2)⊕ S. Also let S ′2 := span{z1} and S ′′2 := span{z2}.

We now augment R by (another copy of) S in two ways, namely via isomor-
phisms µ′ : S → S ′2 and µ′′ : S → S ′′2 . By Observation 3.9(f), R⊕µ′S is isomorphic
to Aug(S, 3)⊕ S and R⊕µ′′ S is isomorphic to Aug(S, 2)⊕Aug(S, 2). In view of
Lemma 3.10, we see that

P1 := Prann(R⊕µ′ S) = Prann(Aug(S, 3)) · Prann(S) = α(3; p) · α(1; p)

while

P2 := Prann(R⊕µ′′ S) = (Prann(Aug(S, 2)))2 = α(2; p)2 .

Now P1 > P2 for all primes p since

p6(P1 − P2) = (p3 + p− 1)(2p− 1)− (p2 + p− 1)2 = p(p− 1)3 .

Thus we have obtained two distinct values of Pr(R⊕µ S) by varying µ. �

4. Large probability values

In this section, we find all possible values of Sac(Cp) in the interval [ε(p), 1].
However we begin by obtaining an upper bound on Prf(R) dependent on the
largest order of elements in R/r-Annf (R); for this result, f can be any symbol.

Theorem 4.1. Suppose f(X, Y ) := aXY + bY X is a symbol, where a, b ∈ Z
are not both zero. Let R be a finite p-ring for some prime p. Suppose the first
invariant of R/r-Annf (R) is k ∈ N.

(a) Prf (R) ≤M(k; p) := (k(p− 1) + p)/pk+1.
(b) Equality in (a) is attained if and only if R/r-Annf(R) is isomorphic to

Cpk , and this is possible for a given symbol f if and only if a+ b is nonzero.
(c) M(k; p) is strictly decreasing as a function of k, with M(1; p) = α(1; p),

M(2; p) = δ(p), and M(3; p) < ε(p).
(d) In the case k = 2, if R/r-Annf (R) is not isomorphic to Cp2, then Prf (R) <

ε(p).

Proof. Let us fix a p-ring R, and write A := R/r-Annf (R). We also write [x] for
the A-coset containing x ∈ R, and of(x) for the order of [x] in A. We assume
that k is the first invariant of A, i.e. pk is the maximal value of of (x).

Let Aj be the set of elements in A of order at most pj , j ≥ 0. Then |Aj/Aj−1| ≥ p
for each 1 ≤ j ≤ k. Thus if we define Rj := |Aj|/|A| and rj := Rj −Rj−1 for all
0 ≤ j, then Rj = 1 for j ≥ k and rj ≥ (p− 1)Rj/p for all 1 ≤ j ≤ k. Iterating
downwards from j = k, we see that Rj ≤ pj−k for all 0 ≤ j ≤ k.
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Since |f(x,R)| ≥ pj whenever [x] ∈ A has order pj, it follows from (2.3) that

Prf (R) ≤ (p− 1)
∞∑
j=0

Rj

pj+1
,

Thus to maximize Prf (R) we should maximize every Rj . Equivalently, we should
take rj = (p− 1)/pk+1−j for 1 ≤ j ≤ k and r0 = 1/pk. With these proportions,
the qk-form of the bound in (2.3) gives

(4.1) Prf (R) ≤
k∑
j=0

rj
pj

=
1

pk
+

k∑
j=1

p− 1

pk+1−j+j = M(k; p) ,

thus finishing the proof of (a).
It is clear that equality in (4.1) can occur only if R/r-Annf (R) is a cyclic group

(of order pk): in fact in this case we see that |f(x,R)| = pj whenever [x] ∈ A has
order pj, so we get equality if and only if R/r-Annf (R) is cyclic.

Suppose a + b is nonzero, and let m = νp(a + b). Given k ∈ N, it is readily
verified that R := Zpk+m is such that R/r-Annf (R) has elements of order pk and
Prf (R) = M(k; p).

Suppose instead that a + b = 0 and that the first invariant of R/r-Annf(R)
is k ∈ N. Now a 6= 0 and R is non-commutative. Note also that r-Annf(R) =
Annf (R). Since f(x, x) = 0 for all x ∈ R, and since there are elements x, y with
axy 6= ayx, R/Annf (R) cannot be cyclic: in fact its first two invariants must be
equal. Thus we cannot have Prf (R) = M(k; p), and we have finished the proof of
(b).

Part (c) is rather easily proved. First, the proof that M(k; p) is a strictly
decreasing function of k is straightforward (or alternatively can be deduced
from the discussion of the upper bound on Prf(R) above). The equations
M(1; p) = α(1; p) and M(2; p) = δ(p) are trivial. The inequality M(3; p) < ε(p)
holds because

p5(ε(p)−M(3; p)) = (2p3 + p2 − 3p+ 1)− (4p2 − 3p) = (2p+ 1)(p− 1)2 > 0 .

Lastly we prove (d). Arguing as in (a), we see that we still have Q1 ≤ p−1.
However we now have |A| ≥ p3, so Q0 ≤ p−3, and to maximize the upper bound
on Prf(R), we take Q1 = p−1 and Q0 = p−3, or equivalently q2 = (p − 1)/p,
q1 = (p2 − 1)/p3, and q0 = 1/p3. With these values of qi, we get

Prf (R) ≤ p− 1

p1+2
+
p2 − 1

p3+1
+

1

p3
=

2p2 − 1

p4
,

and this upper bound β(p) is less than ε(p) because

(4.2) p5(ε(p)− β(p)) = (2p3 + p2 − 3p+ 1)− (2p3 − p) = (p− 1)2 .

�

If we want to find all elements of the set Sf(Cp) ∩ [ε(p), 1], then Theorem 4.1
says that rings R for which R/r-Annf (R) fails to be a p-group are relevant only
for Prf (R) = δ(p), and it tells us when such examples exist. Thus it remains only
to investigate the case where R/r-Annf (R) is an elementary p-group.
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Below, we carry out this analysis for the anticommuting symbol f(X, Y ) :=
XY + Y X. As a first step, we appeal to Theorem 3.5(a) to transform the
problem into an investigation of Sann(Cc ∩ Cp) ∩ [ε(p), 1]. Since the rings of
interest are commutative, it suffices to consider canonical-form rings R with data
(R1, R2). Now R1 is isomorphic to the elementary p-group R/Ann(R) and so, by
Observation 3.4(e), R is a Zp-algebra.

Thus the task at hand is to compute all annihilating probabilities no less than
ε(p) for commutative canonical-form Zp-algebras. Initially we will assume that R
is atomic: by this we mean that R is both unaugmented (meaning that it is not
the augmentation U ⊕µ V for a canonical-form Zp-algebra V with dimV 2 = 1)
and indecomposable (i.e. it is not a direct sum of two nontrivial Zp-algebras). The
following result will be useful.

Lemma 4.2. Suppose R is an atomic canonical-form commutative Zp-algebra
for some prime p, with data (R1, R2) where dimR1 > 1. Then u2 = 0 whenever
u ∈ R is such that dimuR = 1. More generally, we have uv = 0 for all pairs
u, v ∈ R for which dimuR = dim vR = 1 under either of the following additional
assumptions:

(a) dimR1 > 2;
(b) p > 2.

Proof. Suppose for the sake of contradiction that u2 6= 0 even though dimuR = 1.
We may assume that u ∈ R1, since R2 = Ann(R). Now A′ := AnnR(u) has
codimension 1, and it has the form A1 �R2 for some A1 ⊂ R1. Since u /∈ A′, we
see that R1 is the direct sum of U1 := span{u} and A1. Both U2 := span{u2}
and A2 := A2

1 are subspaces of R2, and both of the subspaces U := U1 � U2 and
A := A1 �A2 of R are canonical-form subrings of R. Either U2 is a subset of A2,
in which case R is an augmentation of A by U , or it is not a subset, in which case
R is an internal direct sum of A and U . In either case, we get a contradiction to
the atomicity hypothesis.

The proof that uv = 0 when dimuR = dim vR = 1 and dimR1 > 2 is
similar. From (a), we already know that u2 = v2 = 0. Suppose for the sake
of contradiction that uv 6= 0, and without loss of generality we assume that
u, v ∈ R1. Now A′ := AnnR(u)∩AnnR(v) has codimension 2, and it has the form
A1 � R2. The codimension-1 subspace AnnR(u) is spanned by A′ and u (since
u /∈ AnnR(v)), and R is spanned by u, v, and A′ (since v /∈ AnnR(u)). Letting
U1 := span{u, v}, U2 := span{uv}, and A2 := A2

1, we can then finish the proof as
before.

Finally, suppose that dimR1 = 2, p > 2, and dimuR = dim vR = 1. We know
that u2 = v2 = 0, so suppose for the sake of contradiction that uv = z is nonzero.
Then u′ := u + v and v′ := u − v span R1, (u′)2 = 2z 6= 0, and u′v′ = 0. Thus
dimu′R = 1, and the fact that (u′)2 6= 0 gives a contradiction. �

The condition dimuR = dim vR = 1 does not imply that uv = 0 when R
is an atomic canonical-form commutative Z2-algebra, with data (R1, R2) where
dimR1 = 2, as the following example shows.

Example 4.3. Consider the commutative Z2-algebra R with basis {u, v, z}, where
uv = vu = z and u2 = v2 = 0. Then R has canonical form with data (R1, R2),
where R1 := span{u, v} and R2 := span{z}, and dimxR = 1 for all nonzero
x ∈ R1, since (u + v)u = z. However R is indecomposable because it has only
four nontrivial proper ideals—one is R2, while the other three are spanned by R2
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and a single nonzero element of R1—and all contain R2. It is also unaugmented
because all of these ideals are null algebras so if we use them for augmentation
we can only get other null algebras.

We now separately examine the cases where R/Ann(R) has dimension 2, or
dimension at least 3. For dimension 2, we examine all possibilities regardless of
whether or not Prann(R) ≥ ε(p).

Theorem 4.4. Suppose p is a prime, and R is a commutative atomic canonical-
form Zp-algebra with data (R1, R2) such that dimR1 = 2. Writing m = dimR2,
one of the following situations must occur:

(a) m = 1, p = 2, and Prann(R) = α(2; 2).
(b) m = 2 and Prann(R) = δ(p).
(c) m ∈ {2, 3} and Prann(R) = (2p2 − 1)/p4 < ε(p).

Furthermore (a) is possible only for p = 2, in which case there is a unique
isomorphism type, while for each prime p there is a unique isomorphism type
giving (b). Finally for each prime p, there is a unique isomorphism type giving
the m = 3 subcase of (c), and at least one isomorphism type giving the subcase
m = 2 of (c), with uniqueness at least when p = 2.

Proof. The only possible values of dimxR, for a nonzero element x of R1 are 1
and 2.

Case 1: dimxR = 1 for all nonzero x ∈ R1.

Lemma 4.2 tells us that x2 = 0 for all x ∈ R. Thus if {u, v} is any basis
of R1, then z := uv must be nonzero (lest R be a null ring, contradicting
the canonical-form assumption), and it is clear that R2 = span{z}, so m = 1.
Applying Lemma 4.2 again, we must have p = 2. The equation Prann(R) =
α(2; 2) now follows from Lemma 3.10. This possibility does occur, as we saw in
Example 4.3. Since multiplication is fully specified, this case corresponds to a
unique isomorphism type.

Case 2: dimxR takes on both the values 1 and 2 for different choices of x ∈ R1.

We select u, v ∈ R1 such that dimuR = 1 and dim vR = 2. By Lemma 4.2,
u2 = 0. The equation dim vR = 2 forces the products z1 := uv and z2 := v2 to be
non-collinear. Given that R2 = span{z1, z2}, this fully specifies multiplication on
R, so we have shown that there is exactly one isomorphism type for each prime p.
It is readily verified that if x = au+ bv for a, b ∈ Zp, then dimxR = 2 whenever
b 6= 0, and dimxR = 1 whenever b = 0 and a 6= 0. We therefore deduce from
(3.2) that

Prann(R) =
1

p2

(
p2 − p
p2

+
p− 1

p
+ 1

)
= δ(p) .

It remains to verify that R is atomic. Suppose for the sake of contradiction
that R is of the form U ⊕µ V , where V is a canonical-form Zp-algebra V with
dimV 2 = 1. Let (U1, U2) and (V1, V2) be the data of U and V , respectively, and
so V2 = V 2. Since µ : V2 → U2, dimU2 ≥ 1. Thus dimU1 ≥ dimU/Ann(U) ≥ 1
and dimV1 = dimV/Ann(V ) ≥ 1. But it follows from Observation 3.9(c) with
f(X, Y ) := XY that 2 = dimR1 = dimU/Ann(U) + dimV/Ann(V ), so we must
have dimU1 = 1 and so dimU2 = 1. But now by Observation 3.9(d), dimR2 = 1,
contradicting the fact that dimR2 = 2.
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Suppose instead that R is a direct sum of nontrivial algebras U and V . It is clear
that Ann(R) = Ann(U) � Ann(V ) and R2 = U2 � V 2, so we have Ann(U) = U2

and Ann(V ) = V 2. Also

R/Ann(R) = (U/Ann(U)) � (V/Ann(V ))

so
dimU/Ann(U) + dimV/Ann(V ) = 2 .

If one of these factor spaces has dimension 2, say dimU/Ann(U) = 2, then
dimV/Ann(V ) = 0. But then V would be a null ring, so V = Ann(V ) and
also AnnV = V 2 = 0, so V would be trivial, contradicting our hypotheses.
Thus dimU/Ann(U) = dimV/Ann(V ) = 1, and so dimU2 = dimV 2 = 1. By
Lemma 3.10, Prann(U) = Prann(V ) = α(1; p), forcing the equation δ(p) = α(1; p)2.
But this equation fails for all primes p since

(4.3) p4(α(1; p)2 − δ(p)) = (2p− 1)2 − (3p2 − 2p) = (p− 1)2 > 0 .

This concludes the proof that R is atomic.

Case 3: dimxR = 2 for all nonzero x ∈ R1.

It readily follows from (3.2) that Prann(R) = (2p2 − 1)/p4, and this is less than
ε(p) by (4.2). It is readily verified that this occurs if m = 3, {u, v} is a basis of
R1, {z1, z2, z3} is a basis of R2, and u2 = z1, v2 = z2, and uv = vu = z3.

Conversely, the condition dimuR = dim vR = 2 requires that z1 := u2 and
z3 := uv are non-collinear, and that z2 := v2 and z3 are non-collinear. If {z1, z2, z3}
is a linearly independent set, then we are in the m = 3 situation above, and the
isomorphism type of R is uniquely specified. However we claim that even in the
absence of independence, it is possible that dim xR may equal 2 for all x ∈ R1.

For p = 2, we take z3 = z1+z2. Then (u+v)2 = z1+z2 and (u+v)u = z1+z3 = z2,
giving dim(u + v)R = 2 and so dimxR = 2 for all nonzero x ∈ R. It is readily
verified that if we instead chose z3 ∈ {z1, z2}, then we would get dim(u+ v)R = 1,
so there is a unique isomorphism type giving m = 2 when p = 2.

Suppose instead that p > 2. Let s ∈ Zp be a quadratic nonresidue mod p, and
let c ∈ Zp be defined by c := 4−1(1− s). Then 1− 4c = s, so it follows that the
quadratic g(a) := a2 + a + c has no roots in Zp. Let R be the canonical-type
Zp-algebra with data (R1, R2) where {u, v} is a basis of R1, {z1, z2} is a basis of
R2, and u2 = z1, v

2 = z2, and uv = vu = cz1 + z2. Certainly dimuR = 2, so to
prove that dimxR = 2 for all x ∈ R1, it suffices to prove this when x = au+ v
for some a ∈ Zp. For such an element x, we have xu = (a + c)z1 + z2 and
xv = acz1 + (1 + a)z2. Thus dimxR = 2 if (and only if) the associated matrix

M :=

(
a+ c 1
ac 1 + a

)
is nonsingular. But detM = (a+ c)(1 + a)− ac = g(a) has no roots, so our claim
is proved.

We have shown that this case yields exactly two isomorphism types when p = 2,
and at least two when p > 2. We will not investigate whether or not there are
more than one isomorphism type corresponding to m = 2 for p > 2.

It remains to show that these rings are atomic. The proof that they are
unaugmented is exactly as in Case 2, as is the proof that the m = 2 ring is
indecomposable. The proof for the m = 3 ring starts in a similar fashion, but
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we get a contradiction from the fact that dimS/Ann(S) = dimT/Ann(T ) = 1,
whereas one of S2 and T 2 must have dimension 2. �

We now consider atomic algebras R with dimR/Ann(R) ≥ 3.

Theorem 4.5. If R is a commutative atomic canonical-form Zp-algebra with
data (R1, R2) and dimR1 ≥ 3, then Prann(R) < ε(p).

Proof. Suppose first that dimxR ≤ 1 for at most p of the elements of R1. By
(3.2),

Prann(R) ≤ 1

p3

(
p3 − p
p2

+
p− 1

p
+ 1

)
=
p2 + 2p− 2

p4
.

This bound is less than ε(p) because

p5ε(p)− p(p2 + 2p− 2) = (p+ 1)(p− 1)2 .

Thus we may assume that dimxR ≤ 1 for more than p elements of R1, and
so there exists a two-dimensional subspace T of R1 spanned by elements u1, u2

such that dimu1R = dimu2R = 1. By Lemma 4.2 and distributivity, xy = 0 for
all x, y ∈ T . Letting w ∈ R1 \ T , we deduce that u1w and u2w must both be
nonzero, since otherwise u1 or u2 would be an element of Ann(R), contradicting
the canonical-form assumption. Furthermore u1w and u2w must be non-collinear,
since otherwise some linear combination of u1 and u2 would similarly contradict
the canonical-form assumption. We deduce that if x is a linear combination of u1,
u2, and w, with the w-coefficient being nonzero (in Zp), then dimxR ≥ 2. Thus

Prann(R) ≤ 1

p3

(
p3 − p2

p2
+
p2 − 1

p
+ 1

)
=

2p2 − 1

p4
,

which is less than ε(p) according to (4.2). �

Proof of Theorem 1.1. As discussed above, the task of finding all possible values
in Sac(Cp) ∩ [ε(p), 1] is reduced to finding all possible values of Prann(R) ≥ ε(p)
when R is a commutative canonical-form p-ring. The data of R will be denoted
(R1, R2) as usual, and we write mi := dimRi, i = 1, 2.

Based on our work above, it is straightforward to calculate the values that
occur when R is an atomic canonical-form Zp-algebra; we call these atomic values.
If m1 = 0, then necessarily m2 = 0, so R is the trivial ring and Prann(R) =
1. If m1 = 1, then necessarily m2 = 1, and Prann(R) = α(1; p) now follows
from Lemma 3.10. Both of these rings are clearly atomic. Theorems 4.4 and
Theorem 4.5 tell us that the only possible atomic values in [ε(p), 1] corresponding
to m1 ≥ 2 are α(2; 2) and δ(p).

The value δ(p) also occurs for commutative p-rings R that are not Zp-algebras
according to Theorem 4.1, but such rings give no other values in [ε(p), 1]. Since
R/Ann(R) is cyclic and R has canonical form, we see that R can only have one
isomorphism type: for i = 1, 2, Ri is isomorphic to Cp2 and has generator ui, with
u2

1 = u2 and uiuj = 0 for all other choices of i, j.
It remains to investigate what can be found by augmentation of the (nontrivial)

atomic Zp-algebras above by a canonical-form Zp-algebra V with dimV 2 = 1, or
by direct sums of non-null algebras (since a null ring direct summand leaves the
annihilating probability unchanged). Both of these processes strictly decrease
the annihilating probability—in the case of augmentation because of (3.3)—so it
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suffices to apply these processes iteratively to the atomic algebras R above for
which Prann(R) = α(1; p), Prann(R) = α(2; 2), or Prann(R) = δ(p).

The algebras with Prann(R) = α(1; p) or Prann(R) = α(2; 2) both satisfy
|R2| = p, so augmentation yields only algebras R′ with Prann(R′) = α(k; p) for
some k ∈ N. Repeated augmentation of the algebra R with Prann(R) = α(1; p)
yields all numbers α(k; p), k ∈ N by Remark 3.14.

Next we consider augmenting the algebra R in Theorem 4.4(b) for which
Prann(R) = δ(p). Since the contribution to Pr−ann(R) always includes the contri-
butions of all elements of R2, we see that Pr−ann(R) ≥ 1/p2, and so Pr+

ann(R) ≤
δ(p)− 1/p2. If R⊕µ V is any augmentation with |V 2| = p, then (3.3) and (4.2)
together imply that

Prann(R⊕µ V ) ≤ 2p− 2

p3
+

2p− 1

p2
· 1

p2
=

2p2 − 1

p4
< ε(p) ,

so these algebras give no new values.
For direct sums applied to the above atomic algebras and their augmentations,

we must consider products of values that we already have. We first recall that
α(1; p)α(2; p) = ε(p), so this gives us one new value. In view of (1.2), it follows
that it remains only to consider powers of α(1; p). But

p4(α(2; p)− α(1; p)2) = (p− 1)3 > 0 ,

so α(1; p)3 < ε(p). Thus we need only consider α(1; p)2, a number that by (4.3)
exceeds δ(p). Now α(k; p) > 1/p for all k ∈ N, whereas α(1; 3)2 < 1/3 and for
p ≥ 5, α(1; p)2 ≤ (2/p)2 < 1/p. Thus α(1; p)2 is a new value for all p > 2, but
α(1; 2)2 = α(3; 2).

The next step is to augment the one new canonical-form algebra R with
Prann(R) > ε(p) that we obtained by a direct sum. This is a Zp-algebra with
Prann(R) = α(1; p)2, with basis {u1, u2, z1, z2}, where u2

i = zi, i = 1, 2, and
all other products of basis elements are zero. We write R1 := span{u1, u2}
and R2 := span{z1, z2} as usual, and write a general element x ∈ R in the
form x = a1u1 + a2u2 + b1z1 + b2z2 for ai, bi ∈ Zp. We also denote by {v, w}
the basis of the Zp-algebra S that we use for augmentation; here v2 = w and
vw = wv = w2 = 0, and the data of S is (S1, S2), where S1 := span{v} and
S2 := span{w}.

If a1 and a2 are both nonzero, then it is readily verified that xR = R2, so x
contributes to Pr+

ann(R) in (3.3) regardless of the augmentation function µ. By
contrast, if a1 = a2 = 0, then x contributes to Pr−ann(R) in (3.3). However elements
x with one but not both of a1 and a2 nonzero satisfy dimxR = 1, and so the choice
of µ affects whether such elements x contribute towards Pr+

ann(R) or Pr−ann(R).
As is clear from (3.3), maximizing Prann(R⊕µ S) for a given S is equivalent to
maximizing the number of such elements that contribute to Pr+

ann(R). Since for
such elements, xR is either span{z1} or span{z2}, Prann(R ⊕µ S) is maximized
when µ : S2 → R2 is the homomorphism with the property µ(w) = z1. By
construction, R is a direct sum of two isomorphic copies of S, and the condition
µ(w) = z1 means that Observation 3.9(f) is applicable. Thus R⊕µS is isomorphic
to Aug(S, 2)⊕ S and

Prann(R⊕µ S) = α(1; p)α(2; p) = ε(p) .
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This is a value that we already have, and in fact Aug(S, 2) ⊕ S is the same
canonical-form isomorphism type that gave that value in the previous direct sum
stage of this proof. We have now completed the proof that Sac(Cp) ∩ [ε(p), 1] is
as stated.

Finally to compute Sac(Cfin)∩ [ε(2), 1], we need to take products of elements in
Sac(Cp) for distinct primes p. First we have all the values in Sac(C2) ∩ [ε(2), 1].
These give 1, α(k; 2) for all k ∈ N, 9/16 = α(1; 2)2 = α(3; 2), 1/2 = δ(2), and
15/32 = ε(2). We get nothing additional from primes p > 5 because in this case
(2p− 1)/p2 < 2/p < 15/32. Taking p = 3 does give one additional value, namely
α(1; 3) = 5/9, but it gives no other new values because α(2; 3) = 11/27 and
α(1; 2)α(1; 3) = 5/12 are both less than 15/32. �

Although we did not explicitly state it in Theorem 1.1, we can read off all
isomorphism types of canonical-form commutative p-rings R satisfying Prann(R) ≥
ε(p) from the above proofs. These types consist of the trivial ring, a one-parameter
of algebras giving Pr(R) = α(k; p) for all k ∈ N, and either six (for p = 2) or four
(for p > 2) other types, as detailed in the following theorem.

Theorem 4.6. The following list gives all possible isomorphism types of canonical-
form commutative p-rings R with Prann(R) ≥ ε(p) for a given prime p.

(a) Prann(R) = 1 for the trivial algebra R.
(b) Prann(R) = α(k; p), k ∈ N, for the algebra R with basis {u1, . . . , uk, z},

where u2
i = z for all 1 ≤ i ≤ k, and all other products of basis elements

are zero.
(c) Prann(R) = α(2; 2) for the atomic algebra R of Theorem 4.4(a).
(d) Prann(R) = α(1; p)2 for a direct sum algebra R constructed in the proof of

Theorem 1.1.
(e) Prann(R) = δ(p) for the algebra R of Theorem 4.4(b).
(f) Prann(R) = δ(p) for the canonical construction applied to a ring R given

by Theorem 4.1(b) for k = 2.
(g) Prann(R) = ε(p) for the algebra R := Aug(S, 2)⊕S, where S is the unique

canonical-form commutative Zp-algebra with Prann(S) = α(1; p).
(h) Prann(R) = ε(2) for the algebra R := T ⊕S, where S is as in (g) for p = 2,

and T is the algebra in (c).

All rings listed above give distinct isomorphism types, but note that (c) and (h)
are for p = 2 only.

We omit most of the proof of Theorem 4.6, since it is contained in our earlier
proofs. The fact that the isomorphism type in (f) is unique follows from the fact
that R/Ann(R) is cyclic, as discussed in the proof of Theorem 1.1. The one other
aspect of the proof upon which we should comment is the fact that the various
isomorphism types listed are distinct. For p > 2, this follows from the fact that
there is only one isomorphism type for each value of Prann(R), with the exception
of δ(p) which is associated with both an algebra and a non-algebra.

For p = 2, there are three other duplicate sets of Prann(R) values. First, α(2; 2)
is given by an augmented algebra in (b) and an atomic algebra in (c), so these
are necessarily distinct. Also, α(3; 2) = α(1; 2)2 is associated with an augmented
algebra R in (b) and a direct product algebra in (d), and these are distinguished
by the dimension of R2. The algebras in (g) and (h) are distinguished by the
number of elements x with x2 6= 0: there are two such elements in (g) and none
in (h).
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The set of types given in Theorem 4.6 is considerably more diverse than the
set of types of canonical-form p-rings with Prc(R) ≥ ε(p), which can be deduced
from [2, Theorem 1.2]. For the latter problem and any given prime p, we get
a null algebra for Prc(R) = 1, one algebra for Prc(R) = α(2k; p), k ∈ N, and
nothing else. The extra complexity is a direct result of the fact that x2 can be
nonzero in a commutative ring, in contrast to the fact that it must equal zero in
an anticommutative ring.
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