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Abstract. We investigate the function a(G) = |G| − T (G), where T (G) is the
sum of degrees of the absolutely irreducible complex representations of a finite
group G. In particular, we prove some congruence relations, and find all G for
which a(G) is small.

1. Introduction

Suppose G is a finite group with k(G) conjugate classes. Much has been written
about connections between the structure of G and quantities defined in terms of the
degrees di, 1 ≤ i ≤ k(G) = k, of the absolutely irreducible complex representations

of G. A basic quantity that arises in such work is T (G) :=
∑k

i=1 di, and derived
quantities such as T (G)/k(G). We mention, for instance, the papers of Isaacs and
Passman [9], [10] and, more recently, [2], [11], and [8].

In [3], we investigated the conjugate deficiency of G, r(G) := |G|− k(G). In this
paper, we analogously define the degree sum deficiency, a(G), to be |G| − T (G),
and we also define j(G) := T (G)− k(G) = r(G)− a(G). We will investigate a(G)
and, to a lesser extent, j(G). It is clear that a(G) = 0 if and only if G is abelian
and in what follows, we disregard these groups of which there is an infinite set. We
will find all G for which a(G) is small, and prove various properties of a(G).

As might be expected, the properties of a(G) and j(G) run parallel to those of
r(G), but there are some intriguing differences. We based [3] on the spectacular
congruence |G| − k(G) ≡ 0 (mod 16) when |G| is odd. We will see that a(G) and
j(G) also satisfy some congruence relations, though possibly not as dramatic as
those satisfied by r(G).

We use mostly standard notation: |G| is the order of G, (G : H) = |G|/|H|
is the index of a subgroup H in G, [x, y] is the commutator x−1y−1xy, G′ is the
commutator subgroup of G generated by all the commutators in G. We write
Z(G) for the centre of G. Throughout the remainder of the paper, an (irreducible)
representation means a representation (that is irreducible) over the complex field.

We will need some special families of finite groups. Cn is the cyclic group of order
n ∈ N; Dn is the dihedral group of order 2n, n > 2; Qn is the dicyclic group of order
4n, n > 1 (in particular, Q2 is the quaternion group); and SDn is the semidihedral
group of order 2n whenever n = 2j, for some j > 2. Whenever q is a prime power,
F∗q is the multiplicative group of Fq, the finite field with q elements; and GA(1, q)
is the general affine group of degree 1 over Fq (this group of order q(q− 1) consists
of all formal maps x 7→ ax+ b, a, b ∈ Fq, a 6= 0, under composition).
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It is convenient to assume that the degrees d1, . . . , dk are always written in non-
decreasing order; in particular d1 = 1. We will repeatedly use the well-known facts
that each di is a factor of |G|, and |G| =

∑k
i=1 d

2
i . This last equation, together with

the fact that d2i − di is always even, immediately implies

Observation 1. a(G) ≡ 0 (mod 2).

Note that 2 is the best possible modulus here, since a(S3) = 6− 4 = 2.
We will also need the following known result that summarises the representation

degrees of dihedral, dicyclic, and related groups.

Theorem 2.

(a) For n > 2, Dn has two one-dimensional representations when n is odd, and
four when n is even.

(b) More generally, if H is a finite abelian group in which the subgroup S of
squares has index 2k, k ≥ 0, then the generalised dihedral group G arising
from H has 2k+1 one-dimensional representations.

(c) For n = 2j > 4, SDn has four one-dimensional representations.
(d) For n > 1, Qn has four one-dimensional representations.

All other irreducible representations for the groups in (a)–(d) have degree 2.

Sketch of proof. All groups in (a)–(d) have a normal abelian subgroup of index 2.
By character theory, each degree di of G is a divisor of 2, and so it remains only
to find the number of characters of degree 1.

The number of one-dimensional representations in any finite group G is (G : G′).
The group in (b) is defined in terms of the index 2 subgroup H, a C2 subgroup
with generator x, and the equation [x, h] = h−2 for all h ∈ H. It is routine to
use this equation to show that G′ = S is the subgroup of squares in H, and so
(G : G′) = 2k+1, as required. The arguments for (c) and (d) are similar. �

Theorem 2 readily implies that the function a(G) is onto 2N. In fact it immedi-
ately implies the following corollary.

Corollary 3.

(a) For n > 2, a(Dn) is the largest even integer strictly less than n.
(b) If G, H, and k are as in Theorem 2(b), and |H| = n, then a(G) = n− 2k.
(c) For n = 2j > 4, a(SDn) = n− 2.
(d) For n > 1, a(Qn) = 2n− 2.

We next give another known result; this one summarises the representation de-
grees of the general affine group GA(1, q).

Theorem 4. Suppose q is a power of a prime p > 2. Then GA(1, q) has q irre-
ducible representations: q − 1 of degree 1, and one of degree q − 1.

Sketch of proof. G := GA(1, q) is the semidirect product of N := Fq by H := F∗q,
where the action is given by g−1ag = a2 for a ∈ N and a specific generator g of
H. It readily follows that G′ = N , and so (G : G′) = q − 1. It remains only
to discover how many irreducible representations there are of degree exceeding 1.
Writing a general element of G as gia for some 0 ≤ i < q − 1 and a ∈ N , it is
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readily verified that there are q conjugacy classes: q − 2 of them are cosets giN ,
0 < i < q − 1, and N itself splits into two cosets, {eG} and N \ {eG}. Since we
already have q − 1 representations of degree 1, there is only one other irreducible
representation, whose degree d satisfies

d2 +

q−1∑
i=1

12 = q(q − 1) .

It follows that d = q − 1, as required. �

We will also need the following lemma.

Lemma 5. If G is a direct product of groups H and K, then a(G) ≥ a(H)a(K),
with equality if and only if H and K are both abelian. In the special case K = Cn,
we have a(G) = na(H).

Proof. The irreducible representations of G are direct products of the irreducible
representations of H and K; note that it is crucial that we are considering complex
representations. Thus k(G) = k(H)k(K) and if we denote the character degrees of
H and K as di,H and dj,K , respectively, then

(1) a(G) =

k(H)∑
i=1

k(K)∑
j=1

f(di,Hdj,K) ,

where f(t) := t2 − t for t ≥ 1.
The equation f(st)− f(s)f(t) = st(s + t− 2) implies that f(st) ≥ f(s)f(t) for

s, t ≥ 1, with equality if and only if s = t = 1. Applying this to (1), the first
statement of the lemma follows immediately. When K = Cn, we have k(K) = n
and dj,K = 1 for each j, so (1) reduces to a(G) = na(H), as required. �

The following lemma will allow us to improve the congruence relation in Obser-
vation 1 when |G| is odd.

Lemma 6. Let G be of odd order. Then {1} is the only self-inverse conjugacy
class in G.

Proof. Suppose g−1xg = x−1 for some g, x ∈ G. Then

g−2xg2 = g−1(g−1xg)g = g−1x−1g = (g−1xg)−1 = (x−1)−1 = x .

so [x, g2] = 1.
Now |G| = 2n+ 1 is odd, so g2n+1 = 1. Thus [x, g2n+1] = 1 and, from the above,

[x, g2n] = 1. Thus [x, g] = 1, so x−1 = g−1xg = x and x2 = 1. Since |G| is odd, we
deduce that x = 1, as required. �

Theorem 7. If G is an odd order non-abelian group, then a(G) ≡ 0 (mod 4), and
a(G) ≥ 12.

Proof. Using the equation |G| =
∑

i=1 d
2
i , we see that a(G) =

∑k
i=1 di(di − 1) and,

by Lemma 6, {1} is the only self-inverse conjugacy class in G. By a result of Dixon
[5, 11.7], we deduce that G has only one real irreducible character 1G. For any
representation R of G, we let R∗ be the conjugate representation, with χ and χ∗
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the characters of R and R∗, respectively. We see that χ = χ∗ if and only if χ = 1G,
so with the exception of the degree of 1G, degrees occur in pairs and so k = 2m+ 1
for some m ∈ N.

Recalling our assumption that the degrees d1, . . . , dk are written in increasing
order, it follows that d2j = d2j+1 for all 1 ≤ j ≤ m, and so

a(G) =
k∑

i=1

di(di − 1) = 0 +
m∑
j=1

2d2j(d2j − 1) ≡ 0 (mod 4) .

We now appeal to the fact that each di divides |G|. Since d2i−di is increasing as a
function of di, it follows that to minimise a(G), we should seek to have di = 3 for two
indices i, and di = 1 for all other indices. This results in a(G) = 2(32−3) = 12. �

We claim that 4 and 12 are best possible in this result. Let G be the non-
abelian group of order 21. Then a(G) = 21 − 9 = 12, so certainly 12 is minimal.
Let K be the non-abelian group of order 55. Then a(G) = 55 − 15 = 40. Since
gcd{12, 40} = 4, the modulus 4 is also best possible.

Combining Theorem 7 with Burnside’s result ([4, p.295]) that

|G| − k(G) ≡ 0 (mod 16) whenever |G| is odd ,

we immediately deduce

Corollary 8. If |G| is odd, then j(G) ≡ 0 (mod 4).

The non-abelian group of order 21 gives j(G) = 9 − 5 = 4, showing that this
corollary is best possible. We note that j(S3) = 4 − 3 = 1 shows that no similar
nontrivial congruence result holds for groups of even order.

We can also improve Observation 1 when G is a p-group for some prime p. First,
we state a theorem due to P. Hall [7]; for a more general result, see [12].

Theorem 9. If G is a p-group, then r(G) ≡ 0 mod (p+ 1)(p− 1)2.

For p = 2, this result gives |G| ≡ k(G) (mod 3), while for p = 3 it gives the
Burnside congruence |G| ≡ k(G) (mod 16).

Our analogue for a(G) is as follows.

Theorem 10. If G is a p-group, then a(G) ≡ 0 mod p(p− 1)2.

Proof. Both (G : G′) and all di > 1 are positive powers of p. From a result of
Mann [12], the number of algebraic conjugates of every non-principal irreducible
character is divisible by p− 1. Hence,

|G| − T (G) =
k∑

i=1

di(di − 1) =
k∑

i=(G:G′)+1

pri(pri − 1) ,

For each i > (G : G′), p divides pri , and p − 1 divides pri − 1. By Mann’s result,
each term pri(pri−1) occurs a multiple of p−1 times. Thus |G|−T (G) is divisible
by p(p− 1)2, as required. �



Degree sum deficiency in finite groups 5

We note that D4 (for p = 2) and a non-abelian group of order p3 (for odd
p) show that this result is best possible: in both cases, there are p2 irreducible
representations of degree 1, and p− 1 of degree p, so

T (G) = p2 · 1 + (p− 1) · p = 2p2 − p ,
and

|G| − T (G) = p3 − 2p2 + p = p(p− 1)2 .

Combining the last two theorems, we immediately deduce

Corollary 11. If G is a p-group, then j(G) ≡ 0 mod (p− 1)2.

A non-abelian group of order p3 again shows that Corollary 11 is best possible;
note that it gives no information when p = 2, but we cannot expect a nontrivial
congruence in this case since j(D4) = 6− 5.

The next lemma is taken from [1]. In this lemma and subsequently, Gp is the
class of all finite groups such that p is the least prime dividing |G|.

Lemma 12. If G is non-abelian, and G ∈ Gp for some prime p, then

T (G) ≤ 2p− 1

p2
|G| .

Equality holds if and only if (G : Z(G)) = p2.

Lemma 12 immediately implies that if G ∈ Gp is non-abelian, then

(2) |G| ≤ p2a(G)

(p− 1)2
.

In particular, |G| ≤ 4a(G) for every non-abelian G, and if additionally |G| is odd,
then |G| ≤ 9a(G)/4. We also record the following immediate consequence; here
and later, we treat isomorphic groups as being equal.

Corollary 13. There are only a finite number of groups with a given value of
a(G) > 0 (and by Observation 1, this value must be even).

In the following theorem, and subsequently, we use GAP IDs to name groups.

Theorem 14. There are exactly three groups G with a(G) = 2, namely those with
GAP IDs [6, 1], [8, 3], and [8, 4] (i.e. S3, D4, and Q2).

Although Theorem 14 is easily proven, it seems worthwhile to give two proofs.

Proof 1 of Theorem 14. The estimate |G| ≤ 4a(G) implies that |G| ≤ 8. There are
only three such non-abelian groups. By checking them, we see that all are of the
required form. �

Proof 2 of Theorem 14. Note that a(G) is a sum of terms of the form d2i − di,
i = 1, . . . , k. Now 32 − 3 > 2, so the only way that such a sum can equal 2 is if
di = 2 for a single index i, and di = 1 for all other indices. By contrast, r(G) is
a sum of terms d2i − 1. In this particular case, r(G) − a(G) = −1 − (−2), and so
r(G) = 3. The same type of argument shows that r(G) = 3 implies a(G) = 2. The
solutions to r(G) = 3 are exactly the indicated groups according to [3, Theorem 3],
so we are done. �
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Proof 2 is slightly longer than Proof 1, but it throws fresh light on the result,
and can also be adapted to analyze other small values of a(G) using the results of
[3]. We note that in [3], the number of groups G with r(G) = n is denoted t(n),
and a table of values of t(n) for n ≤ 30 is given at the top of p. 17. We will refer
to those values below.

Theorem 15. There are exactly nine groups G with a(G) = 4, namely those with
GAP IDs [10, 1], [12, 1], [12, 4], [16, 3], [16, 4], [16, 6], [16, 11], [16, 12], [16, 13].

Proof. Because 32 − 3 > 4, an argument like that in Proof 2 of Theorem 14 shows
that a(G) = 4 occurs if and only if di = 2 for two indices i, and di = 1 for all other
indices. Thus we must have r(G) = 6. In a similar manner, we see that if r(G) = 6
then a(G) = 4. This reduces the problem to listing the solutions of r(G) = 6. By
[3, Theorem 4], there are nine such groups, and they are as listed (except that in
[3] we use the IDs of Thomas and Wood [14], and here we have switched to GAP
IDs). �

Remark 16. Some, but not all, of the groups in Theorem 15 can be discovered
using Theorem 2 and Lemma 5. In particular, [10, 1] is D5, [12, 1] is Q3, [12, 4] is
D6 (and also S3×C2), [16 : 11] is D4×C2, and [16 : 12] is Q2×C2. The other four
groups can be verified using GAP [6].

Theorem 17. There are exactly eight groups G with a(G) = 6, namely those with
GAP IDs [12, 3], [14, 1], [16, 7], [16, 8], [16, 9], [18, 3], [24, 10], [24, 11].

Proof. Ignoring representations of degree 1, there are two ways of writing 6 as sums
of numbers of the form d2i − di: either as 32 − 3 or as 22 − 2 repeated three times.
The first possibility corresponds to r(G) = 32−1 = 8, while the second corresponds
to r(G) = 3(22 − 1) = 9. Conversely, r(G) = 8 arises only as 32 − 1, and r(G) = 9
arises only as 3(22 − 1), so both lead to a(G) = 6. Thus a(G) = 6 is equivalent to
r(G) ∈ {8, 9}. By [3, Theorem 5], A4 is the only group with r(G) = 8; it has GAP
ID [12, 3].

As for r(G) = 9, [3] states that t(9) = 7. Corollary 3 gives four groups with
a(G) = 6 and r(G) = 9, namely D7, D8, SD8, and Q4; these have GAP IDs [14, 1],
[16, 7], [16, 8], and [16, 9], respectively. We get the other three such groups from
Theorem 14 and Lemma 5: S3 × C3, D4×C3, and Q2×C3; these have GAP IDs
[18, 3], [24, 10], and [24, 11], respectively. �

Remark 18. In the proof of Theorem 17, we relied on the fact that t(9) = 7
to shorten the proof. Without this fact, we can still finish the proof as long as
we know some basic information about all groups of order at most 24: in fact, it
suffices to use Corollary 3, together with a knowledge of the number of nonabelian
groups of order at most 24, and fact that for GA(1, 5) (GAP ID [20, 3]), we have
a(G) = 12 and r(G) = 15; this last fact follows immediately from Theorem 4.

First, groups with r(G) = 9 and a(G) = 6 have order at most 4a(G) = 24
and must have even order by Theorem 7. The order must be strictly greater
than 3 · 22 = 12, leaving only |G| ∈ {14, 16, 18, 20, 22, 24}. Once we omit the
groups considered in the proof of Theorem 17, there are no other non-abelian
groups of order 14, and the other non-abelian groups of order 18 are D9 and the
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generalised dihedral group arising from C3×C3, which by Corollary 3 both have
degree sum deficiency 9− 20 = 8. Similarly, we can eliminate the one non-abelian
group D11 of order 22, and all three non-abelian groups of order 20 (D10, Q5, and
GA(1, 5)). Finally, there are no non-abelian groups of 16 other than the nine listed
in Theorems 15 and 17.

In a similar fashion to the above theorems, we see that a(G) = 8 is equivalent
to r(G) ∈ {11, 12} and, since t(11) = 0 and t(12) = 23, we have:

Theorem 19. There are exactly twenty-three groups G with a(G) = 8.

Remark 20. GAP [6] reveals that a(G) = 8 is satisfied for two groups of order 18,
two of order 20, four of order 24, and fifteen of order 32.

Finally we consider a(G) = 10. This value is interesting because it is the smallest
n for which a(G) = n is not equivalent to r(G) being in some related set of numbers,
as we will see in the proof.

Theorem 21. There are exactly seven groups G with a(G) = 10, namely those
with GAP IDs [22, 1], [24, 4], [24, 6], [24, 8], [30, 1], [40, 10], and [40, 11].

Proof. Arguing as before, we see that the equation a(G) = 10 implies that r(G) ∈
{14, 15}. Again by [3], we have t(14) = 0 and t(15) = 10. However r(G) = 15 can
be attained in two distinct ways: either di = 2 for five indices i, or di = 4 for a
single index i. The first of these possibilities gives the desired a(G) = 10, but the
second gives a(G) = 12.

Both of these possibilities occur, with the first occurring seven times and the
second three times. In fact, we have already seen one group with a single irre-
ducible degree-4 representation and all others of degree 1, namely GA(1, 5) (GAP
ID [20, 3]). The other two such groups are the central product of D4 and either
another D4 or a Q2 (GAP IDs [32, 49] and [32, 50]).

As for the groups with a(G) = 10, we can find most of these by the same methods
as before, namely D11, D12, Q6, S3 × C5, D4 × C5, and Q2 × C5 (GAP IDs [22, 1],
[24, 6], [24, 4], [30, 1], [40, 10], and [40, 11]). The remaining group with a(G) = 10,
provided by GAP [6], has GAP ID [24, 8]. �

The above theorems give us the first five entries in the sequence (Na(n))∞n=1,
where Na(n) is the number of groups with a(G) = 2n for n ∈ N. Using GAP, we
can find more of the initial entries. Here are the values of Na(n) for 1 ≤ n ≤ 20:

3, 9, 8, 23, 7, 39, 8, 52, 16, 23, 7, 113, 13, 62, 21, 163, 10, 102, 7, 66, . . .

This does not have the appearance of a sequence for which we can find a nice
formula, but it would be at least desirable to find good upper and lower bounds
for this sequence.

By Theorem 7, a(G) = 4n for some n ≥ 3 if G is of odd order. The following
result characterises the odd order non-abelian groups for which a(G) is minimal.

Theorem 22. There are exactly three odd order groups G with a(G) = 12, namely
those with GAP IDs [21, 1], [27, 3], and [27, 4].
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Proof. By (2), a(G) = 12 for odd |G| implies |G| ≤ 9(12)/4 = 27. By the proof
of Theorem 7, we see that a(G) = 12 requires that two of the irreducible rep-
resentations are of degree 3 and all others of degree 1 (and so r(G) = 16). Thus
|G| > 2·32 = 18, and |G| must be a multiple of 3, so we need only check groups with
|G| ∈ {21, 27}. There are three non-abelian groups of these orders, and a(G) = 12
for all of them. �

Remark 23. The odd order groups with a(G) = 12 are exactly the odd order
groups with r(G) = 16 given by [3, Theorem 6].

If f(G) is defined to be either r(G) or a(G), then f(G) = 0 if and only if G is
abelian, and there is a positive constant C such that |G| ≤ Cf(G) whenever G is
nonabelian; see [3] and Corollary 13. Consequently, there are only finitely many
groups with a given value of f(G) > 0. We end by proving an analogous result
for f(G) := j(G), except that in this case, we can only get a quadratic bound
|G| ≤ C(j(G))2. Of course, this still implies that there are only finitely many
groups with a given value of j(G) > 0.

Note that j(G) =
∑k

i=1(di − 1). From this equation, it is clear that j(G) = 0
if and only if G is abelian. Before proceeding to prove that |G| ≤ C(j(G))2 when
j(G) > 0, we need an elementary lemma.

Lemma 24. For all x, y ≥ 4,
√
x+ y + 1 <

√
x+
√
y.

Proof. By calculus, f(x, y) :=
√
x+
√
y−
√
x+ y− 1 is increasing as a function of

both x and y, when x, y ≥ 4. Thus f(x, y) ≥ f(4, 4) = 3−
√

8 > 0. �

Theorem 25. If G is non-abelian, then |G| ≤ 2(j(G) + 1)2. More generally, if
G ∈ Gp is non-abelian, then |G| ≤ p(j(G) + 1)2/(p− 1).

Proof. Since di = 1 if and only if i ≤ (G : G′), we have

j(G) =

(
k∑

i=1

di

)
− k =

k∑
i=(G:G′)+1

(di − 1) .

Consider the problem of minimizing the sum
∑k

i=i0
(
√
ei − 1) subject to a con-

straint
∑k

i=i0
ei = M , where we assume that i0 ∈ N and M ≥ 4 are constants, but

k and the numbers ei0 , . . . , ek are allowed to vary, subject to k ≥ i0 and ei ≥ 4 for
each i. By Lemma 24, we see that√

ei + ej − 1 < (
√
ei − 1) + (

√
ej − 1) ,

i.e. combining terms in the sum makes the sum strictly smaller. Thus to minimise
the sum, we must take k = i0 and ek = M .

Applying this to j(G) with data

( i0, M, ei0 , . . . , ek ) := ( (G : G′) + 1, |G| − (G : G′), d2i0 , . . . , d
2
k ) ,

we deduce that

j(G) ≥
√
|G| − (G : G′)− 1 .
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If G ∈ Gp is non-abelian, then (G : G′) ≤ |G|/p, so |G| − (G : G′) ≥ (p− 1)|G|/p,
and

j(G) + 1 ≥

√
(p− 1)|G|

p
. �

Remark 26. A quadratic bound is the best that we can hope for in Theorem 25.
In fact, |G| > (j(G)+1)2 for arbitrarily large groups G. It suffices to consider G :=
GA(1, q), where q is some prime power. It follows immediately from Theorem 4
that j(G) = q − 2, and so |G| = q(q − 1) > (j(G) + 1)2.
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[1] F. Barry, D. MacHale, and Á. Nı́ Shé, Some supersolvability conditions for finite groups, Math.
Proc. Royal Ir. Acad. 106 (2006), 163-177.

[2] Y. Berkovich and A. Mann, Sums of degrees of irreducible characters, J. Algebra 199 (1998),
646–665.

[3] S.M. Buckley and D. MacHale, Conjugate deficiency in finite groups, Bull. Irish Math. Soc.
71 (2013), 13–19.

[4] W. Burnside, Theory of Groups of Finite Order. 2nd ed., Dover, New York, 1955.
[5] J.D. Dixon, Problems in group theory, Dover, New York, 1973.
[6] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.4.12, 2008

(http://www.gap-system.org).
[7] P. Hall, unpublished.
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