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Abstract. We investigate the set of values attained by Pr(R), the probability
that a random pair of elements in a finite ring R commute. A key tool is a
new notion of isoclinism for rings, and an associated canonical form for rings.
In particular, we show that Pr(R) is an isoclinic invariant, and characterize all
possible values of Pr(R) ≥ 11/32, and the associated isoclinism families.

1. Introduction

There has been much written on the possible values attained by the probability
that a random pair of elements in a finite group commute: see for instance
[5], [11], [7], [14], [17], [13], [4], [6], [3], and [9]. In this paper, we examine the
corresponding question for finite rings. This topic, by contrast, has attracted
little attention: indeed [15] is the only contribution of which we are aware.

To be precise, we define the commuting probability to be

Pr(R) :=
|{(x, y) ∈ R×R : xy = yx}|

|R|2

where R is a finite ring, and |S| denotes cardinality of a set S. Let R be the set
of values of Pr(R) as R ranges over all (possibly non-unital) finite rings. Trivially,
R ⊂ (0, 1]∩Q. For each prime p, we define Rp similarly, except that R is allowed
to range only over p-rings, meaning rings whose order is a power of p.

Throughout the paper, we write

αp =
p2 + p− 1

p3
, βp =

2p2 − 1

p4
, and γp =

p3 + p2 − 1

p5
.

We will see later that

γp < α2
p < βp <

1

p
< αp , p ≥ 2 .

We determine in particular all t ∈ R such that t ≥ γ2 = 11/32, and all t ∈ Rp,
t ≥ γp, where p is prime. Additionally, we will see that each such t ∈ (γ2, 1)
uniquely characterizes the ring in a certain sense.

Theorem 1.1. For all primes p,

Rp ∩ [γp, 1] =

{
p2k + p− 1

p2k+1

∣∣∣∣ k ∈ N
}
∪
{

1, βp, α
2
p, γp

}
.
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Moreover,

R ∩ [γ2, 1] = (R2 ∩ [γ2, 1]) ∪ {α3} =

{
22k + 1

22k+1

∣∣∣∣ k ∈ N
}
∪
{

1,
7

16
,
11

27
,
25

64
,
11

32

}
.

Our second main result deals with uniqueness. This involves the concept of
the Z-family of a ring R, defined as the equivalence class of R with respect to
Z-isoclinism, a new notion of isoclinism for rings that we introduce. Isomorphic
rings are always Z-isoclinic but the converse fails: for instance, a ring R is always
Z-isoclinic to the direct sum of R and a commutative ring.

There are existing notions of isoclinism for rings and Lie algebras (see [12,
Chapter 3] and [16]), but Z-isoclinism is rather different in nature from these:
it is built around additive group isomorphisms rather than ring isomorphisms.
However, the two associated additive groups R/Z(R) and [R,R] of a ring R in
a particular Z-family are nevertheless uniquely determined; here, Z(R) is the
center of R, and [R,R] is the subgroup of (R,+) generated by all commutators
[x, y] = xy − yx.

Theorem 1.2. The equation Pr(R) = t uniquely determines the Z-family of
R ∈ S, where S is a class of finite rings, in both of the following situations:

(a) t ∈ Rp ∩ (γp, 1], and S is the class of all p-rings for some prime p.
(b) t ∈ R ∩ (γ2, 1], and S is the class of all finite rings.

The lower bounds for t in the above theorem are best possible. In fact, we have
the following result at the endpoint value.

Theorem 1.3. Suppose p is a prime. The equation Pr(R) = γp does not uniquely
identify the Z-family of R among the class of p-rings. In fact, among all p-rings
satisfying this equation, the total numbers of various types of equivalence classes
are as follows: five Z-families of R, four R/Z(R) group isomorphism types, and
three [R,R] group isomorphism types.

After some preliminaries in Section 2, we develop a basic theory of Z-isoclinism
in Section 3, and compare it with other notions of isoclinism. We also discuss a
general ring construction which we use in particular to define a canonical form
for rings associated with Z-isoclinism. Next, in Section 4, we discuss another ring
construction which we call augmentation. Finally, we prove our main results in
Section 5, where we also explicitly list the various Z-isoclinism and associated
group isomorphism types that occur among p-rings R satisfying Pr(R) ≥ γp.

2. Preliminaries

We will briefly discuss nonassociative rings and Lie algebras in Section 3 but,
unless so qualified, rings and algebras are assumed to be associative. We do
not assume that rings are unital. We will occasionally make use of possibly
nonassociative rings R, and we extend the definition of Pr(R) given in the
introduction to this context in the obvious manner.

We use standard notation. Throughout this paragraph, R is a possibly nonas-
sociative ring. Zn denotes the ring of integers mod n, Z∗n is the set of units in
Zn, and Cn denotes a cyclic group of order n. A commutator in R always means
an additive commutator, and is denoted [x, y] = xy − yx. We write [x,R] for
the subgroup of (R,+) consisting of all elements of the form [x, y], y ∈ R. The
commutator subgroup [R,R] is the subgroup of (R,+) generated by the set of all
commutators [x, y], x, y ∈ R, while R2 is the possibly nonassociative subring of R
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generated by the set of all pairwise products xy, x, y ∈ R. CR(x) is the centralizer
of x in R. R/Z(R) and R/CR(x) always refer to the relevant additive factor
groups; we call R/Z(R) the central factor group of R. We write A ∼= B when A
and B are isomorphic (as groups, rings, or Lie algebras, depending on the context).
We use the terms monomorphism and epimorphism in the algebraic sense, so they
refer to homomorphisms that are injective or surjective, respectively.

We will need to deal with direct sums of rings, but also direct sums of abelian
groups, and sometimes the groups involved in the latter are additive groups of
associated rings. To distinguish between the two concepts, we write A⊕B for a
direct sum of rings, and A�B for a direct sum of abelian groups.

If R is the direct sum of subrings R1 and R2, then Pr(R) = Pr(R1) Pr(R2): this
follows easily from the fact that two elements in a direct sum commute if and
only if both pairs of summands commute. Thus R is closed under products, and
0 is an accumulation point of R. Since a finite ring is a direct sum of rings of
prime power order, it follows that the numbers in R are precisely the set of all
products

∏n
i=1 ti, where n ∈ N, ti ∈ Rpi , and each pi is prime. To understand the

structure of R ∩ (a, 1] for any given 0 < a < 1, it therefore suffices to understand
Rp ∩ (a, 1] for all primes p. Thus in our search for elements of R, it suffices to
examine only p-rings.

Observation 2.1. If a, b, a′, b′ ∈ R, with a−a′, b−b′ ∈ Z(R), then [a, b] = [a′, b′].

Thus we can view [·, ·] as a bilinear map from (R/Z(R))× (R/Z(R)) to R.
We now discuss the key role played by centralizers CR(x) in the calculation of

Pr(R).

Observation 2.2. For each x in a ring R, the additive group R/CR(x) is isomor-
phic to [x,R]. In particular, if R is a Zp-algebra, then the dimension of R/CR(x)
equals the dimension of [x,R].

It follows easily from the definition of Pr(·) that

(2.1) Pr(R) =
1

|R|2
∑
x∈R

|CR(x)| = 1

|R|
∑
x∈R

1

|R/CR(x)|
.

Note that CR(x) = CR(x+ z) for any z ∈ Z(R). Consequently,

(2.2) Pr(R) =
1

|R/Z(R)|
∑

x+Z(R)∈R/Z(R)

1

|R/CR(x)|
,

where this last sum involves a term for a single representative x of each coset.
If R is a p-ring, it follows from (2.2) that

Pr(R) =
1

|R/Z(R)|

K∑
k=0

nk

pk

where nk is the number of cosets x+ Z(R) ∈ R/Z(R) such that |R/CR(x)| = pk

and |R/Z(R)| = pK . By Observation 2.2, this last equation for Pr(R) can be
rewritten as:

(2.3) Pr(R) =
K∑
k=0

ak(R)

pk
.
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where we define ak(R) to be the proportion of cosets x+ Z(R) ∈ R/Z(R) such
that [x,R] has order pk.

Lemma 2.3. If R is a finite noncommutative ring, then Pr(R) > 1/|[R,R]|.
Moreover, both N := |[R,R]| · |R/Z(R)| · Pr(R) and M := |R/Z(R)|2 Pr(R) are
integers.

Proof. Since |[R,R]| ≥ |[u,R]| = |R/CR(u)| for all u ∈ R, the inequality Pr(R) ≥
1/|[R,R]| follows from (2.2). Equality would require that |[R,R]| = |[u,R]| for
all u ∈ R, but this fails when u = 0. To see that N is an integer, note that [u,R]
is a subgroup of [R,R], and so |R/CR(u)| is a divisor of |[R,R]| for all u ∈ R.
Similarly, M is an integer because R/CR(u) is a factor group of R/Z(R), and so
|R/CR(u)| divides |R/Z(R)|. �

Remark 2.4. One might hope to reverse partially the inequality in Lemma 2.3
and prove that Pr(R) ≤ f(|[R,R]|) for some f : N→ (0, 1] such that f(n)→ 0
as n → ∞. However, no such inequality is possible. To see this, we let R
be the Zp-algebra with basis {u0, u1, . . . , un, z1, . . . , zn}, where the only nonzero
products of basis elements are u0ui = zi for 1 ≤ i ≤ n, and n ∈ N. Then Z(R)
has basis {z1, . . . , zn}, |R/Z(R)| = pn+1, and |[R,R]| = pn. It is also clear that
if x =

∑n
i=0 xiui, where each xi ∈ Zp, then dimR/CR(x) = n if x0 6= 0, and

dimR/CR(x) = 1 if x0 = 0 but x 6= 0. Consequently,

Pr(R) =
pn+1 − pn

p(n+1)+n
+

pn − 1

p(n+1)+1
+

1

pn+1
=
pn + p2 − 1

pn+2
>

1

p2
.

(Note that the cases n = 1, 2, 3 of this example already give us rings with
Pr(R) = αp, βp, γp, respectively.)

By the fundamental theorem of finitely generated groups, a finite abelian p-
group (A,+) can be decomposed as a direct sum �m

i=1Cpki in essentially one way.
This leads to the following definition.

Definition 2.5. If (A,+) is a finite abelian p-group of the form �m
i=1Cpki with

more than one element, we denote its isomorphism type as (k1, k2, . . . , km; p),
where each ki is an integer and k1 ≥ k2 ≥ · · · ≥ 1. We define the noncommutative
type of a finite ring R to be the isomorphism type of R/Z(R), so if R is a p-ring
and |R| > 1, we denote this type as (k1, k2, . . . , km; p).

Sometimes it will be useful to write the invariant factors ki as “functions” which
take a finite abelian p-group A or a p-ring R as a parameter, writing ki(A) or
ki(R), m(A) or m(R), etc.

Lemma 2.6. Let R be a nonabelian p-ring with k := k1(R). There exist elements
a, b ∈ R such that pk−1[a, b] 6= 0. Consequently m(R) ≥ 2 and k1(R) = k2(R).

Proof. Choose a ∈ R such that pk−1a /∈ Z(R). Then there exists b ∈ R such that
pk−1a does not commute with b, so pk−1[a, b] 6= 0, and also a does not commute
with pk−1b. It follows that a+Z(R) and b+Z(R) generate distinct subgroups of
R/Z(R) of order pk, and that they have trivial intersection. Thus k2(R) = k. �
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Suppose (A,+) is an abelian group of order pM for some M . We say that a
set of elements B = {b1, . . . , bN} is linearly independent if all elements in the
span of B can be written as a linear combination of elements of B in a “unique”
way. By unique, we mean that if

∑N
i=1 nibi =

∑N
i=1mibi, then nibi = mibi for all

1 ≤ i ≤ N . We say that B = {b1, . . . , bN} is a basis if it is linearly independent
and it spans A. Equivalently, B is a basis if and only if A is an internal direct
sum of the cyclic subgroups generated by each of the elements of B. Every finite
abelian group has a basis, and in fact any linearly independent collection of
elements of maximal order in such a group A is a subset of a basis: this follows
by a straightforward modification of the proof of [10, Theorem 2.14.1].

Remark 2.7. It is readily verified that if B = {b1, . . . , bN} is a basis of a
finite abelian p-group A and B′ = {b′1, . . . , b′N} has the “lower triangular form”
b′i =

∑
j≤i cijbj with every cij ∈ N, then B′ is also a basis as long as cii is not

divisible by p, and pk divides cij whenever o(bj) = pko(bi) for some k ∈ N; here
o(x) denotes the order of the element x.

An ordered basis just means a tuple (b1, . . . , bN) such that {b1, . . . , bN} is a
basis.

Whenever p is a prime, we define a p-value to be any number in Rp, and a
value is any number in R. Further, we call a p-value t a small p-value if t ≤ γp,
and we call it a large p-value otherwise, where γp is as in Theorem 1.1. A large
value is a value larger than γ2, and all other values are small. Thus the main
results in the introduction give in particular all large p-values and all large values,
and state that each such value is associated with a unique Z-family.

Let us now verify that αp, βp, and γp satisfy the inequalities mentioned in the
introduction for p ≥ 2. The inequalities βp ≤ 1/p ≤ αp are immediate. As for
α2
p < βp, this amounts to the statement that 2p4 − p2 − (p2 + p− 1)2 > 0, which

follows by algebra:

2p4 − p2 − (p2 + p− 1)2 = p4 − 2p3 + 2p− 1 = (p− 1)2(p2 − 1) > 0 , p ≥ 2 .

Likewise, the inequality γp < α2
p can be verified as follows:

(p2 + p− 1)2 − (p4 + p3 − p) = p3 − p2 − p+ 1 = (p− 1)(p2 − 1) > 0 , p ≥ 2 .

Remark 2.8. Throughout the paper, we allow rings to be non-unital. Perhaps
surprisingly, however, there is no difference in the set of values in R if we restrict
to finite rings with unity. To see this, suppose t = Pr(R) for a possibly non-unital
finite ring R. Choosing n such that nx = 0 for all x ∈ R, we can embed R in a
unital ring R′, where (R′,+) is the direct sum of R and Zn, and multiplication
is defined by the rule (i + r)(j + s) = ij + (is + jr + rs) whenever i, j ∈ Zn

and r, s ∈ R. Then it is readily verified that the additive groups R′/CR′(i + r)
and R/CR(r) are isomorphic whenever i ∈ Zn, r ∈ R, and so (2.2) implies that
Pr(R) = Pr(R′).

3. Isoclinism, joins, and Z-canonical form

In this section, we introduce the concept of Z-isoclinism, as mentioned in
the introduction. This is analogous to the concept of isoclinism for groups
introduced by Hall [8] and used widely in the literature of group theory; for
more on group isoclinism, see for instance [1]. It was used to investigate the
commuting probability of groups by Lescot [13]. There is also an existing concept
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of isoclinism for rings and Lie algebras due to Kruse and Price [12] and Moneyhun
[16], respectively, but these are different from Z-isoclinism, as we discuss below.

We also define a general method for constructing a noncommutative ring by
“joining” two abelian groups via a “join function” or “join form” that suggests
how we might define multiplication of elements in order to define canonical
representatives of Z-families, and it will also be used later to construct various
rings important to our arguments.

As motivation for the concept of Z-isoclinism, consider a finite ring S which is
the direct sum of another ring R with some commutative ring. It follows from (2.2)
that Pr(R) = Pr(S). We would therefore like a relation that treats these two rings
as being equivalent. Observation 2.2 and (2.2) suggest that such an equivalence
should preserve the isomorphism type of both the central factor group and the
commutator subgroup. However, even if rings R, S have isomorphic central factor
groups and isomorphic commutator subgroups, it does not necessarily follow that
Pr(R) = Pr(S)—see Propositions 4.6(c) and 4.7(b)—so we also need to preserve
how elements of R (or R/Z(R), in view of Observation 2.1) give rise to elements
of [R,R]. This leads us to the following definition; in this definition, we are
mostly interested in (associative) rings, but it is useful to employ the context of
possibly nonassociative rings.

Definition 3.1. A pair of possibly nonassociative rings, R and S, are said to be
Z-isoclinic if there are additive group isomorphisms φ : R/Z(R)→ S/Z(S) and
ψ : [R,R]→ [S, S] such that ψ([u, v]) = [u′, v′] whenever φ(u+Z(R)) = u′+Z(S)
and φ(v + Z(R)) = v′ + Z(S). We call (φ, ψ) a Z-isoclinism from R to S.

(R/Z(R))⊗2
φ⊗2

∼=
//

[·, ·]
����

(S/Z(S))⊗2

[·, ·]
����

[R,R]
ψ⊗2

∼=
// [S, S]

Figure 1. Z-isoclinism: horizontal maps are group isomorphisms

Equivalently, Definition 3.1 says that the diagram in Figure 1 commutes. Here
the top spaces are tensor squares, and [·, ·] denotes the universal map from each
tensor square induced by the bilinear commutator map (which is well-defined on
T/Z(T )× T/Z(T ), T ∈ {R, S}, by Observation 2.1).

The following result shows that Pr(·) is a Z-isoclinic invariant, which mirrors
the situation for groups.

Lemma 3.2. If (φ, ψ) is a Z-isoclinism from one finite ring R to another S, then
[x,R] and [x′, S] are isomorphic whenever x ∈ R, φ(x+ Z(R)) = x′ + Z(S), and
Pr(R) = Pr(S).

Proof. The desired isomorphism for any given x ∈ R is simply ψ′ := ψ|[x,R]. Since
ψ is an isomorphism, it is clear that ψ′ is at least a monomorphism. Suppose
x ∈ R and x′, y′ ∈ S, with φ(x+Z(R)) = x′+Z(S). There exists y ∈ R such that
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(R/Ann(R))⊗2
φ⊗2

∼=
//

mult

����

(S/Ann(S))⊗2

mult

����

R2
ψ⊗2

∼=
// S2

Figure 2. R- and G-isoclinism: horizontal maps are ring isomorphisms

φ(y + Z(R)) = y′ + Z(S), and now ψ′([x, y]) = [x′, y′]. Thus ψ′ : [x,R]→ [x′, S]
is actually an isomorphism. The fact that Pr(R) = Pr(S) now follows from
Observation 2.2 and (2.2). �

We now pause to compare Z-isoclinism with other notions of isoclinism. It is
best to begin by recasting Z-isoclinism as a special case of a more general type of
isoclinism on possibly nonassociative rings. Suppose therefore that R is a possibly
nonassociative ring, and let Ann(R) be the two-sided annihilator of R, i.e. the
ideal of all x ∈ R such that xR = Rx = {0}. Let mult : (R/Ann(R))⊗2 → R2

be the additive group epimorphism defined by mult(x⊗ y) = xy. We say that
two such possibly nonassociative rings R and S are G-isoclinic if Figure 2 is
a commutative diagram with the horizontal maps being group isomorphisms.
We say that R and S are R-isoclinic if in fact the horizontal maps are ring
isomorphisms.

Note that Z-isoclinism for an (associative) ring R coincides with G-isoclinism
for RLie, the Lie ring obtained from R by replacing the original multiplication of
R by the commutator operation. Z- and G-isoclinism appear to be new concepts,
but R-isoclinism has appeared previously, at least in special cases: Kruse and
Price [12, Chapter 3] define it for (associative) rings and Moneyhun [16] defines
it for Lie algebras. Note that G-isoclinism is a coarser notion than R-isoclinism,
and so Z-isoclinism of rings R is a coarser notion than R-isoclinism of RLie.

We now compare and contrast the notions of group-, G-, and R-isoclinisms.
To begin with, we list some basic properties of G- and R-isoclinisms that are
natural analogues of the corresponding properties for group isoclinism; these
properties a fortiori imply the corresponding properties for Z-isoclinism (where
we change possibly nonassociative ring to ring, Ann(R) to Z(R), and null ring to
commutative ring).

Observation 3.3.

(a) G- and R-isoclinism are both equivalence relations on the class of all
possibly nonassociative rings.

(b) Isomorphic possibly nonassociative rings are R-isoclinic (and so G-isoclinic):
a ring isomorphism Φ : R → S induces an R-isoclinism (φ, ψ), where
φ : R/Ann(R) → S/Ann(S) is a factor map of Φ, and ψ = Φ|R2 is a
restriction of Φ.

(c) R-isoclinic (and so also G-isoclinic) possibly nonassociative rings are not
necessarily isomorphic: indeed, all null rings (meaning rings where all
products are zero) are R-isoclinic.
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(d) If Ri is G-isoclinic (or R-isoclinic) to Si, i = 1, 2, then R1⊕R2 is G-isoclinic
(or R-isoclinic, respectively) to S1 ⊕ S2.

A Z-family is an equivalence classes of possibly nonassociative rings with respect
to Z-isoclinism.

We now contrast the different sorts of isoclinism. The following example of a
pair of Lie algebras that are G-isoclinic but not R-isoclinic is a useful starting
point.

Example 3.4. Suppose R is the 2-dimensional Zp-algebra with basis {u, v},
where xy = x for all choices of basis elements x, y, and suppose S is the 3-
dimensional Zp-algebra with basis {u, v, z}, where the only nonzero product of
basis elements is uv = z. Then Z(R) = {0}, Z(S) has basis {z}, and so the
monomorphism µ : R → S defined by µ(iu + jv) = iu + jv, i, j ∈ Zp, induces
a group isomorphism φ : R/Z(R) → S/Z(S). It can also be verified that µ
induces a group isomorphism [R,R]→ [S, S] (an isomorphism between these two
groups of order p), and that (φ, ψ) is a Z-isoclinism from R to S, or equivalently
(φ, ψ) is a G-isoclinism from R′ to S ′, where these last two objects are the Lie
rings associated with R and S, respectively. Note though that R′ and S ′ are not
R-isoclinic: in fact, R′/Ann(R′) is isomorphic as a Lie algebra to R′, whereas
S ′/Ann(S ′) is a commutative Lie algebra. (In this example, [R′, R′] and [S ′, S ′]
are isomorphic as Lie algebras, but it is not hard to construct an example where
that too fails.)

In the following result, Rop is the opposite (possibly nonassociative) ring,
i.e. (R,+) and (Rop,+) are the same group, while the multiplication ∗ of Rop is
related to the multiplication · of R by the rule x ∗ y = y · x.

Proposition 3.5. If R is a ring, then R is Z-isoclinic to Rop.

Proof. By symmetry of their definitions, Z(R) = Z(Rop) and [R,R] = [Rop, Rop].
Taking φ to be the identity map and ψ(x) = −x, we get the desired Z-isoclinism.

�

Kruse and Price [12, p. 30] define the notion of a stem ring to be a ring R such
that R2 ⊃ Z(R). Similarly Moneyhun [16] defines a stem algebra to be a Lie
algebra L such that [L,L] ⊃ Z(L). In both cases, they show that every finite
ring (or Lie algebra) is R-isoclinic to a stem ring (or stem algebra) which, for an
R-isoclinism family containing a finite order ring (or Lie algebra) can alternatively
be defined as a ring (or Lie algebra) of minimal order. These statements are all
direct analogues of what is true for stem groups and group isoclinism families
that contain groups of finite order.

Kruse and Price [12, 3.2.7] further show that all algebras over a field F that lie
in a single R-isoclinism family are R-isoclinic to the direct sum of some minimal
dimension algebra and a null algebra. The corresponding result for Lie algebras
was later proven by Moneyhun [16]. In particular, R-isoclinic stem algebras
(either among associative algebras or Lie algebras) are isomorphic.

By contrast, if we were to define a Z-isoclinic stem ring to be a ring R with
the property that Z(R) ⊂ [R,R], then both R and S of Example 3.4 would be
stem rings in the same Z-family even though they are not of the same order.
Furthermore, it is well known that the two non-isomorphic noncommutative rings
of order p2 are this ring R and its opposite ring, so they both belong to the same
Z-family by Proposition 3.5.
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Note that the situation regarding groups is intermediate between that regarding
R- and Z-isoclinism. On the one hand, stem groups can be defined as groups
G such that Z(G) ⊂ [G,G], and for finite groups this is consistent with being a
group of minimal order in its isoclinism family. In particular if two stem groups
are in the same isoclinism family and one is of finite order, then they are of the
same order. On the other hand, there is no simple direct product characterization
of isoclinism for finite groups. In fact, isoclinic stem groups are not necessarily
isomorphic: it is well known that the two non-isomorphic nonabelian groups of
order p3 are isoclinic for any given prime p. Roughly speaking, we could say that
R-isoclinism is much more restrictive than group isoclinism, which in turn is a
little more restrictive than G-isoclinism (if it makes sense to compare groups and
rings!).

Since the natural definition of a stem ring is not restrictive enough to tie down
even the order of a ring in a Z-family of finite rings, we replace it by the following
notion which at least achieves this much.

Definition 3.6. A ring R is said to have Z-canonical form if:

(a) (R,+) is the internal direct sum of subgroups A1 and A2.
(b) xy ∈ A2 for all x, y ∈ R, and xy = 0 if either x or y lies in A2.
(c) [R,R] = Z(R) = A2.

We say that a ring S is a Z-canonical relative of a ring R if R and S are Z-isoclinic
and S has Z-canonical form. (It follows from (b) and (c) above that we also have
Ann(R) = A2.)

Note that in Example 3.4, S is a Z-canonical relative of R. It is perhaps not
immediately clear that every finite ring has a Z-canonical relative, but we will
prove that this is so (Proposition 3.10). In fact, we will see that a ring R might
have several (ring-isomorphism classes of) Z-canonical relatives (Example 3.13).
However, the choice of Z-canonical relative will not be important for our analysis.
In general, separating the central factor group and the commutator subgroup will
greatly aid our analysis of R.

To prove that Z-canonical relatives always exist, we need a certain join con-
struction which we now define.

Definition 3.7. Suppose we have the following data:

(a) A pair of abelian groups (A1,+) and (A2,+).
(b) A join form J : A1 × A1 → A2 which is bilinear over Z.

We define the ring R = Join(A1, A2, J) as follows. First, (R,+) is the (internal)
direct sum A1 � A2. Multiplication in R is defined by the following equations
and distributivity:

(a) xy = J(x, y) if x, y ∈ A1.
(b) xy = yx = 0 if x ∈ A2 and y ∈ R.

Note that in the above definition, associativity of R is trivial since all triple
products are zero. Distributivity follows readily from the bilinearity of J .

When R is finitely generated, we can replace the join form J by a multiplication
defined only on basis elements.

Definition 3.8. Suppose we have the following data:

(a) A pair of abelian groups (A1,+) and (A2,+).
(b) A basis B = {b1, . . . , bN} of A1.
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(c) A join function f : B ×B → A2 such that |f(b, b′)|2 divides both |b|1 and
|b′|1, where |x|k denotes the order of x ∈ Ak, k = 1, 2 (and all orders divide
infinity).

Then join(A1, A2, B, f) = Join(A1, A2, J), where J : A1 × A1 → A2 is defined by

J

(
N∑
i=1

xibi,

N∑
j=1

yjbj

)
=

N∑
i,j=1

xiyjf(bi, bj) , where xi, yj ∈ Z .

It is a routine matter to verify that J is bilinear over Z.

Observation 3.9. Let R = join(A1, A2, B, f), as above. Then:

(a) Z(R) consists of all elements of the form z + x, where x ∈ A2, and z ∈ A1

is any element that commutes in R with all elements of A1.
(b) [b, b′] = f(b, b′)− f(b′, b) for b, b′ ∈ B.
(c) [R,R] is the subgroup of A2 generated by [b, b′], b, b′ ∈ B.

Our first use of the join construction is to prove that Z-canonical relatives
often exist. Below and in later sections, we at times slightly abuse terminology
by saying that {r1, . . . , rm} ⊂ R is a basis of R/Z(R) when we mean that
{r1 + Z(R), . . . , rm + Z(R)} ⊂ R/Z(R) is a basis of R/Z(R).

Proposition 3.10. A ring R has a Z-canonical relative if either

(a) the factor group R/Z(R) is finitely generated, or
(b) g(x) := 2x defines a (group) automorphism of [R,R].

Proof. We first prove (a). Let B := (b1, . . . , bN) ∈ RN be a finite ordered
basis of coset representatives of A1 := R/Z(R). Let A2 := [R,R]. Define
f(bi, bj) = cij := [bi, bj] if i < j, and f(bi, bj) = 0 otherwise. It is readily verified
that join(A1, A2, B, f) is a Z-canonical relative of R. We write Can(R;B) for
join(A1, A2, B, f) in this construction. Note that the consistency condition follows
from the basic properties of R.

We now prove (b). Let A1 = R/Z(R) and A2 = [R,R]. Let J : A1 × A1 → A2

be defined by J(u+ Z(R), v + Z(R)) = [u, v] for all u, v ∈ R: this is well defined
by Observation 2.1, and is bilinear over Z. Let S = Join(A1, A2, J). Using
Observation 3.9(a) and the fact that g is injective, it is straightforward to verify
that Z(S) = A2, so we can identify the abelian groups S/Z(S) and R/Z(R). It
is also clear that [S, S] = 2A2 = [R,R]. Taking φ to be the identity map on
R/Z(R), and ψ to be g, we see that R is Z-isoclinic to S. It follows readily that
S is a Z-canonical relative of R. �

Note that any canonical relative S of a finite ring R is a member of the
Z-isoclinism class of R with “reasonably small” order. Indeed, Z-isoclinism
preserves the group isomorphism types of the central factor group R/Z(R) and
of the commutator subgroup [R,R], so a given finite ring R determines the order
of its Z-canonical relatives: |S| = |R/Z(R)| · |[R,R]|. Thus |S| ≤ |R| if and only
if |[R,R]| ≤ |Z(R)|.

It is now easy to deduce the following analogue for Z-isoclinism of a result for
isoclinism of groups [2, Proposition 2.10].

Corollary 3.11. The following are equivalent for a ring R:

(a) R has a finite Z-canonical relative.
(b) R is Z-isoclinic to a finite ring;
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(c) R/Z(R) is finite;

Proof. It is trivial that (a) implies (b). If R is Z-isoclinic to a finite ring S,
then R/Z(R) ∼= S/Z(S), so certainly R/Z(R) is finite. Thus (b) implies (c).
Finally, suppose (c) holds. By Observation 2.1, R contains only finitely many
commutators. Since [R,R] consists of all finite sums of commutators, this also is
of finite size. By Proposition 3.10, R has a Z-canonical relative, and it has order
|R/Z(R)| · |[R,R]|. Thus (c) implies (a). �

Observation 3.12. If R/Z(R) is a vector space over Zp, and S is a canonical
relative of R, then S is a Zp-algebra.

Z-canonical relatives S of a ring R are quite closely related. Not only are they
all in the same Z-family, but they also have features that set them apart from
most members of this Z-family: they satisfy the nilpotency condition S3 = 0,
and they satisfy [S, S] = Z(S). However, the following example shows that the
isomorphism type of a Z-canonical relative of a ring R is not uniquely determined.

Example 3.13. Suppose A1 is a Zp-vector space with ordered basis B :=
(u0, . . . , un), and A2 a Zp-vector space with basis {z1, . . . , zn}. Let f(u0, uj) = zj
for 1 ≤ j ≤ n, and f(ui, uj) = 0 for all other pairs (i, j). Defining R :=
join(A1, A2, B, f), we can identify R/Z(R) with A1, and Z(R) with A2. Next let
Rj := Can(R;Bj) for 0 ≤ j ≤ n, where Bj := (u1, . . . , uj, u0, uj+1, . . . , un) and
Can(R;Bj) is in the proof of Proposition 3.10(a). We write ·j for the multiplication
of Rj to distinguish distinct multiplications. Then

(a) R = R0, and (Rj,+) is the same group for all 0 ≤ j ≤ n.
(b) The commutator of x and y in Rj is independent of j, so we denote it by

[x, y] in all cases.
(c) Defining the subset S of Rj to consist of all u = z +

∑n
i=0 ciui such

that z ∈ A2 and ci ∈ Zp for all i with c0 6= 0, we see that S has the
following isomorphism-invariant property: dim[x,Rj] = n for x ∈ S and
dim[x,Rj] = 1 otherwise.

Because of the form of S, the right ideal x·jRj contains span{zj+1, . . . , zn}, and so
has dimension at least n− j for all x ∈ S. Furthermore this minimum is achieved
for x = x0. Thus mj := min{dimx·jRj | x ∈ S} equals n− j for each 0 ≤ j ≤ n.
Since S is defined by an isomorphism-invariant property, the number mj is also
isomorphism invariant. It follows that no two of the Z-canonical relatives Rj of
R are isomorphic.

We now use Z-isoclinism to define a weaker notion of decomposability for
p-rings.

Definition 3.14. A ring is said to be decomposable if it can be written as a direct
sum of two nontrivial rings, and Z-decomposable if it is Z-isoclinic to a ring that
can be written as a direct sum of two noncommutative rings. We use the terms
indecomposable and Z-indecomposable to refer to rings where these conditions fail.

Since Pr(R) is a Z-isoclinism invariant, it follows that if a finite ring R is Z-
decomposable with R being Z-isoclinic to R1 ⊕R2, then Pr(R) = Pr(R1) Pr(R2).
To characterize all p-values no less than γp, it therefore suffices to characterize
Pr(R) for all Z-indecomposable p-rings R.
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Lemma 3.15. A finitely generated ring R is Z-decomposable if and only if it
has a Z-canonical relative S of the form S = S1 ⊕ S2, where S1, S2 are both
noncommutative.

Proof. Suppose that R is Z-isoclinic to R1⊕R2, where R1, R2 are noncommutative.
By Observation 3.3(d), R is Z-isoclinic to S := S1⊕ S2, where Si is a Z-canonical
relative of Ri, i = 1, 2. It readily follows that S is a Z-canonical relative of R, as
desired. The converse is trivial. �

It is tempting to conjecture that perhaps all Z-canonical relatives of a Z-
decomposable ring R can be decomposed as direct sums of noncommutative rings.
However, this is false.

Proposition 3.16. There exists a ring in Z-canonical form which is Z-decom-
posable, but cannot itself be decomposed as a direct sum of two noncommutative
rings.

Proof. Suppose p is a prime. Consider the Zp-algebra R with basis

B = {u1, u2, u3, u4, z13, z24} ,
where the only nonzero products of basis elements are u1u3 = z13 and u2u4 = z24.
Then R is in Z-canonical form and it is Z-decomposable: in fact R = R1 ⊕ R2,
where Ri is the noncommutative ring generated by ui and ui+2, i = 1, 2.

Let S be the Zp-algebra S with the same basis B as above, but now the only
nonzero products of basis elements are u1u3 = z13 and u2u4 = u21 = z24. Certainly
S is in Z-canonical form, and it is readily verified that S is Z-isoclinic to R,
using identity maps for both φ and ψ in Definition 3.1. We claim that S is not
decomposable as a direct sum of two noncommutative rings.

Suppose for the sake of contradiction that S = S1 ⊕ S2, where S1, S2 are
noncommutative ideals of S. Let Z be the ideal with basis {z13, z24}. We write
a general element of S in the form x = zx +

∑4
i=1 xiui, where xi ∈ Zp and

zx ∈ Z. Suppose without loss of generality that S1 contains some x with x1 6= 0.
Then xu1 = x1z24 and xu3 = x1z13 both lie in S1, so S1 contains Z. Since
S1 ∩ S2 = {0} and [S, S] = Z, this forces S2 to be commutative, giving the
required contradiction. �

4. Augmentation

In this section, we study a construction that we call augmentation. We are
interested in this mainly for (associative) rings but, in the absence of an added
assumption (see below), the augmentation of an (associative) ring might be
nonassociative. Since we want to repeatedly augment a ring, it is therefore best
to develop the theory in the context of possibly nonassociative rings.

Whenever R is a possibly nonassociative ring, and c ∈ [R,R] is an element of
order p, we define the p-augmentation R′ of R (via c) to be a specific possibly
noncommutative ring of order p2|R|. Addition in R′ is defined by the requirement
that (R′,+) is a direct sum of (R,+) and (T,+), where (T,+) equals Cp � Cp.
To define multiplication in R′, we view R as being embedded in R′ and write a
general element of R′ as iu+ jv+ r, where r ∈ R, u, v are the basis elements of T ,
and i, j ∈ Zp. We multiply elements in R ⊂ R′ as in the original ring R, define
ur = ru = vr = rv = 0 for all r ∈ R, and define uv = c, vu = 0. Multiplication
can now be extended to all of R′ by distributivity.

Clearly the p-augmentation R′ of a finite possibly nonassociative ring R via
c is a possibly nonassociative ring of order p2|R|. If in fact R is a ring and
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c ∈ [R,R] ∩ Ann(R), then R′ is also an (associative) ring. To prove associativity,
we first use distributivity to reduce the required proof to a proof that (xy)z = x(yz)
for all x, y, z ∈ R ∪ S, where S := {u, v}. Assume therefore that x, y, z ∈ R ∪ S.
If x, y, z ∈ R, then the desired equation follows from associativity of R. In all
remaining cases, we claim that (xy)z = x(yz) = 0. Let us denote either (xy)z or
x(yz) as t, and so t equals either ab or ba, where a is a parenthesized product
(either xy or yz) and b is the remaining factor (either z or x). Now a ∈ R for all
x, y, z ∈ R ∪ S, so t = 0 if b ∈ S. If instead b ∈ R, and one of the factors of a lies
in S, then a ∈ {0, c} ⊂ Ann(R), and again t = 0. The claim is proved.

An equivalent way of defining the above p-augmentation R′, assuming c ∈
[R,R] ∩ Ann(R), is to write R′ := (R⊕ S)/I, where S is the three-dimensional
Zp-algebra S with basis {u, v, z} in which the only nonzero product of basis
elements is uv = z, and I is the ideal generated by z − c. If we also assume that
R is in Z-canonical form, then c ∈ Z(R), and it becomes clear that this is a rather
special ring theoretic analogue of a central product in group theory. A reasonable
general ring theoretic analogue of a central product would be (R⊕ S)/I, where
R, S are arbitrary Z-canonical form rings and I is an arbitrary ideal defined
by identifying two isomorphic central additive subgroups of R and S (which
are necessarily ideals because of the Z-canonical form). However, we do not
require such a general “central sum”, and we look only at the special case of
augmentations.

A p-augmented ring is any ring that is a p-augmentation of some other ring. A
ring is augmented if it is p-augmented for some p, and otherwise it is unaugmented.
A ring is Z-augmented if it is Z-isoclinic to an augmented ring, and otherwise we
say that R is Z-unaugmented.

We write R′ = Augp(R, c) if R′ is the p-augmentation of R via c. For n ∈ N,
we write Rn = Augn

p (R, c) if Rn is the n-fold p-augmentation of R via c, meaning
that Rn is defined by the equations R0 = R and Ri = Augp(Ri−1, c) for 1 ≤ i ≤ n.

We now record some properties of augmentation; for these, we assume that
R′ = Augp(R, c) and S ′ = Augp(S, d) are p-augmentations of rings R and S.

Observation 4.1.

(a) R′/Z(R′) can be identified naturally with (R/Z(R))� T , and so is isomor-
phic to the direct sum (R/Z(R)) � Cp � Cp.

(b) [R′, R′] is isomorphic to [R,R].
(c) If φ : R→ S is a ring isomorphism and φ(c) = d, then R′ and S ′ are also

isomorphic.
(d) If (φ, ψ) is a Z-isoclinism from R to S such that ψ(c) = d, then R′ and S ′

are Z-isoclinic.
(e) The isomorphism type of Augp(R, c) remains unchanged if we change the

basis {u, v} of T , or if we replace c by ic, i ∈ Z∗p.
(f) If R is a Z-canonical form ring, then so is R′.

Parts (a)–(c) above are rather obvious, so we leave the verifications to the
reader. We now prove (d). Let us assume that (φ, ψ) is a Z-isoclinism from R to
S. Writing general elements x1, x2 of R′ in the form xi = ri + ti, where ri ∈ R
and ti ∈ T , we define the Z-isoclinism (Φ,Ψ) from R′ to S ′ by the equations
Φ(xi + Z(R′)) = φ(ri + Z(R)) + ti and Ψ([x1, x2]) = ψ([r1, r2]) + [t1, t2]. Note
that on the right-hand side of these equations, each ti is to be interpreted as an
element of {0}� T ⊂ S ′ and [t1, t2] is given by the augmentation process in S ′.



14 STEPHEN M. BUCKLEY, DESMOND MACHALE, AND ÁINE NÍ SHÉ

We leave to the reader the verification that (Φ,Ψ) is indeed a Z-isoclinism. The
first part of (e) follows because any change of basis induces an automorphism
of T , while the isomorphism from Augp(R, c) to Augp(R, ic) is a consequence of
the T -automorphism f(au + bv) = aiu + bv, a, b ∈ Zp. Finally, it is clear that
if R has Z-canonical form with data (A1, A2), as in Definition 3.6, then R′ has
Z-canonical form with data isomorphic to (A1 � Cp � Cp, A2).

Despite Observation 4.1(e), and the fact that R′/Z(R′) and [R′, R′] are indepen-
dent of c, we will see in Proposition 4.6 that the p-augmentation R′ := Augp(R, c)
may depend on the choice of c. Indeed, by changing c, we can change not only
the ring-isomorphism class of R′, but also its Z-family and the value of Pr(R′).

We will use augmentation to create rings with new commuting probabilities
from rings with a given commuting probability. Since Pr(R) is a Z-isoclinic
invariant (Lemma 3.2), and since augmentation interacts well with isoclinism
(Observation 4.1(d)), we get the same new commuting probabilities whether we
augment R or one of its Z-isoclinic relatives S. Since a finite ring is Z-isoclinic to
a Z-canonical form ring (Proposition 3.10), it follows that if we want to find all
commuting probabilities of rings that can be obtained from any given class C of
finite rings, and if all finite rings isoclinic to R ∈ C also lie in C, then it suffices
to consider augmentations of Z-canonical form rings R ∈ C. Note that, since
[R,R] = Ann(R) in a Z-canonical form ring, using only such rings ensures that
all p-augmentations are associative.

We call a number t ∈ R an augmented or an unaugmented value if t = Pr(R) for
an augmented or an unaugmented ring R, respectively; a value could potentially
be both augmented and unaugmented. Once we discover an unaugmented value
t = Pr(R), where R is a Z-canonical form ring with a commutator of order p, we
get a sequence of associated augmented values in R by repeatedly p-augmenting
R. This process depends on R and c, not just on t. To get a formula for
Pr(Augp(R, c)), we first define

Pr+c (R) =
1

|R|
∑
x∈R

c∈[x,R]

1

|R/CR(x)|
,

Pr−c (R) =
1

|R|
∑
x∈R

c/∈[x,R]

1

|R/CR(x)|
,

Note that Pr(R) = Pr+c (R) + Pr−c (R). Also Pr+c (R) > 0 (since c = [x, y] for some
x, y ∈ R) and Pr−c (R) > 0 (since c /∈ [0, R]).

Lemma 4.2. Suppose R is a finite possibly nonassociative ring, and let Rn :=
Augn

p (R, c), where n ∈ N and c ∈ R is a commutator of order p. Then

(4.1) Pr(Rn) = Pr+c (R) +
(p2n + p− 1) Pr−c (R)

p2n+1
.

This sequence of values is strictly decreasing, with positive limit Pr+c (R)+Pr−c (R)/p,
as n→∞.

Proof. Throughout this proof, we write (Rn,+) = W �R, where W is the direct
sum of 2n copies of Cp. Letting ei be a generator of the ith copy of Cp in W , we
assume that these basis elements are ordered so that {e1, e2} is a basis of what
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we called (T,+) for the first augmentation, {e3, e4} is a basis of (T,+) for the
second augmentation, etc. Thus e2i−1e2i = c for all 1 ≤ i ≤ n.

We write a general element x ∈ Rn as x = w+r, where w ∈ W and r ∈ R. Now
[x,Rn] contains c whenever w 6= 0. Indeed, if w =

∑2n
i=1wiei, where wi ∈ Zp, and

wj 6= 0 for some 1 ≤ j ≤ 2n, then either [x, ej+1] or [x, ej−1] is a nonzero multiple
of c, depending on whether j is odd or even, respectively. It is similarly clear that
[x,Rn] contains [r, R], and hence that [x,Rn] is generated as an additive group
by [r, R] and c when w 6= 0. It is also clear that [x,Rn] = [r, R] when w = 0.

We now fix r ∈ R, and let x range over all elements of the form w + r, w ∈ W .
Suppose first that c ∈ [r, R]. For all such x, we have

|Rn/CRn(x)| = |[x,Rn]| = |[r, R]| = |R/CR(r)| ,
and so the contribution to Pr(Rn) corresponding to this r is the same as its
contribution to Pr(R) because the single term in (2.1) for r ∈ R has been replaced
by p2n equal terms for x ∈ Rn, a change that compensates exactly for the fact
that we now multiply our sum by 1/|Rn| = p−2n(1/|R|).

Suppose instead that c /∈ [r, R]. For p2n − 1 of p2n possible elements x =
w + r ∈ Rn, we see that |Rn/CRn(x)| = p|R/CR(r)|. For the remaining element,
|Rn/CRn(x)| = |R/CR(r)|. Thus the contribution to Pr(Rn) corresponding to r
is a times the corresponding contribution towards Pr(R), where

a =
p2n − 1

p2n+1
+

1

p2n
=
p2n + p− 1

p2n+1
.

Summing the contributions towards Pr(Rn) above separately over all r ∈ R for
which c ∈ [x,R], and over all r ∈ R for which c /∈ [x,R], we get (4.1). Finally,
the limit statement is clear. �

Corollary 4.3. Suppose R is a finite possibly nonassociative ring, and suppose
Rn = Augn

p (R, c), where n ∈ N and c ∈ R is a commutator of order p. Then

(4.2) Pr(Rn) ≤ Pr(R)−
(

1− p2n + p− 1

p2n+1

)
a0(R) ,

where a0(R) = 1/|R/Z(R)|, with equality if and only if c ∈ [x,R] for all x ∈
R \ Z(R). The upper bound in (4.2) is strictly decreasing to the positive limit
Pr(R)− (p− 1)a0(R)/p as n→∞.

Proof. Note that Pr−c (R) ≥ a0(R), so (4.2) follows immediately from (4.1). The
condition for equality is equally clear, as is the limit statement; note that positivity
of the limit follows from positivity of the limit in Lemma 4.2. �

An important special case of augmentation is when [R,R] is of order p. In
this case, we omit c from our notation and terminology because it follows from
Observation 4.1(e) that the choice of c is unimportant. We also obtain the
following special case of Corollary 4.3.

Corollary 4.4. Suppose R is a finite possibly nonassociative ring and that [R,R]
is of order p. Writing Rn = Augn

p (R), n ∈ N, and a0(R) = 1/|R/Z(R)|, we have

(4.3) Pr(Rn) = Pr(R)−
(

1− p2n + p− 1

p2n+1

)
a0(R) ,

Thus Pr(Rn) decreases to the positive limit Pr(R)− (p− 1)a0(R)/p as n→∞.
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Once we find all the unaugmented large p-values, and we understand the
structure of the associated rings, we can use Lemma 4.2 or one of its corollaries
to gain information about all augmented large p-values. Consequently, we may
restrict our attention initially to unaugmented rings in Z-canonical form if we
wish.

It remains to give examples showing that for R′ = Pr(Augp(R, c)), Pr(R′) may
depend on the chosen c. Because of Lemma 3.2, such examples automatically
imply that the Z-isoclinism class of R′ may also depend on c. The following ring,
which will be important later, is one where there is no such dependence, but we
will use it to construct an example where there is such dependence.

Example 4.5. Let R = join(A1, A2, B, f), where A1 is a vector space over Zp

with ordered basis B := (u1, u2, u3), A2 is a vector space over Zp with basis
{c12, c23}, and f is the join function defined by f(u1, u2) = c12, f(u2, u3) = c23,
and f(ui, uj) = 0 otherwise. As usual, we view {u1, u2, u3} as being a basis of

R/Z(R). Examining the p3 representatives x =
∑3

i=1 xiui of R/Z(R), where
xi ∈ Zp for i = 1, 2, 3, we see that [x,R] = [R,R] is two-dimensional for the
p3 − p2 elements with x2 6= 0. For the remaining p2 − 1 nonzero representatives,
[x,R] is one-dimensional, and each of the p + 1 one-dimensional subspaces of
[R,R] = A2 occurs for p − 1 of these representatives. Finally, [0, R] is zero-
dimensional. It follows that, regardless of the choice of nonzero commutator c,
we have Pr+c (R) = (p2 − 1)/p4 and Pr−c (R) = 1/p2. Applying Lemma 4.2, we see
that if R1 := Augp(R, c), then

(4.4) Pr(R1) =
p2 − 1

p4
+
p2 + p− 1

p5
=
p3 + p2 − 1

p5
= γp ,

Augmentation was independent of c in the above example because R was
symmetrical with respect to all nonzero commutators. However, augmentation
breaks this symmetry so if we carry out a second augmentation via d, it matters
whether or not d ∈ span{c}, as we now see.

Proposition 4.6. Suppose R, p are as in Example 4.5, and let c, d be nonzero
commutators in R. Let Ri := Augi

p(R, c) and let R1,1 := Augp(R1, d).

(a) R2 and R1,1 have isomorphic central factor groups and isomorphic com-
mutator subgroups.

(b) R2 and R1,1 are Z-isoclinic, and even isomorphic, if d = ic for some i ∈ Z∗p
(c) If dim span{c, d} = 2, then R2 and R1,1 are not Z-isoclinic. Moreover,

Pr(R1,1) < Pr(R2).

Proof. Parts (a) and (b) follow immediately from parts (a), (b) and (e) of Obser-
vation 4.1.

It remains to prove (c), so we assume that dim span{c, d} = 2. It suffices to
prove that Pr(R1,1) < Pr(R2), since this implies that R1,1 and R2 cannot be
Z-isoclinic. By the analysis of Example 4.5, Lemma 4.2 implies that

Pr(R2) =
p2 − 1

p4
+
p4 + p− 1

p7
=
p5 + p4 − p3 + p− 1

p7
.

Let (u1, u2, u3) be the ordered basis of A1 used to construct R, and let {u4, u5} be
a basis of the copy of T used to construct R1 from R. The only nonzero products of
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elements of {u1, . . . , u5} are u1u2 = c12, u2u3 = c23, and u4u5 = c ∈ span{c12, c23}.
We identify R with the subring R⊕ {0} of R1.

Note that dim[R1,1, R1,1] = dim[R,R] = 2. In order to compute Pr(R1,1), we
first compute Pr+d (R1), which we rewrite as an average over cosets as we did for
the definition of Pr(R):

(4.5) Pr+d (R1) =
1

|R1/Z(R1)|
∑

x+Z(R1)∈R1/Z(R1)
d∈[x,R1]

1

|R1/CR1(x)|
,

It suffices to sum over elements of the form x =
∑5

i=1 xiui, where xi ∈ Zp for all
i, since there is one such element in each coset of Z(R1) = A2. We also write
x = X1 +X2, where X1 =

∑3
i=1 xiui and X2 =

∑5
i=4 xiui.

As in the proof of Lemma 4.2, [x,R1] is the subspace of R1 generated by
[x,R] = [X1, R], and possibly c: we include c as a generator exactly when X2 6= 0.
We break the sum in (4.5) into three pieces. First, there are those elements
with dim[x,R] = 2: this condition corresponds exactly to the inequality x2 6= 0.
Then d ∈ [x,R] ⊂ [x,R1] irrespective of the other coefficients, so these elements
give a contribution of (p5 − p4)/p5+2 to Pr+d (R1). Next, there are the elements
with dim[x,R] = 1 but dim[x,R1] = 2. This happens when the following two
conditions are satisfied:

• [x,R] is any one-dimensional subspace of A2 other than the one containing
c (as happens for p(p− 1) choices of X1);
• X2 6= 0 (as happens for p2 − 1 choices of X2).

Thus these elements give a contribution of p(p−1)(p2−1)/p5+2 to Pr+d (R1). Finally,
there are those elements x such that d ∈ [x,R] and dim[x,R] = 1 = dim[x,R1].
This happens for p− 1 choices of X1 and one choice of X2, so these elements give
a contribution of (p− 1)/p5+1 to Pr+d (R1). Summing the contributions, we get

Pr+d (R1) =
(p5 − p4) + (p4 − p3 − p2 + p) + (p2 − p)

p7
=
p2 − 1

p4
.

Combining this equation with (4.4), we get

Pr−d (R1) =
p3 + p2 − 1

p5
− p2 − 1

p4
=
p2 + p− 1

p5
.

Now using (4.1), we deduce that

Pr(R1,1) =
p2 − 1

p4
+

(p2 + p− 1)2

p8
=
p6 + 2p3 − p2 − 2p+ 1

p8
.

Finally,

Pr(R2)− Pr(R1,1) =
(p6 + p5 − p4 + p2 − p)− (p6 + 2p3 − p2 − 2p+ 1)

p8

=
(p− 1)3(p+ 1)2

p8
,

which is positive for all primes p. Since R2 and R1,1 have different commuting
probabilities, they cannot be Z-isoclinic. �
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We give one more example which will be important later.

Proposition 4.7. Suppose the ring R can be written in the form S⊕S, where S
is the Z-canonical form Zp-algebra with basis {u, v, z}, in which the only nonzero
product of basis elements is uv = z. Let R′ := Augp(R, c) for some nonzero
c ∈ [R,R], and let us write c = c1 + c2, where c1 ∈ S ⊕ {0} and c2 ∈ {0} ⊕ S.

(a) If c1 = 0 or c2 = 0, then Pr(R′) = P1 := (p2 + p− 1)(p4 + p− 1)/p8.
(b) If c1 6= 0 and c2 6= 0, then Pr(R′) = P2 < P1.

Proof. Note that S has Z-canonical form with data A1 := span{u, v} and A2 :=
span{z}. We first examine the augmentations of S. It is readily verified that
|S/CS(x)| = p for all nonzero elements of A1, and that |[S, S]| = p. It follows
readily that for every nonzero c ∈ [S, S], Pr+c (S) = (p2 − 1)/p3, Pr−c (S) = 1/p2,
and so Pr(S) = Pr+c (S) + Pr−c (S) = αp. Defining S ′ = Augp(S), we see using
Lemma 4.2 that

α′p := Pr(S ′) =
p2 − 1

p3
+
p2 + p− 1

p5
=
p4 + p− 1

p5
.

From now on, we write elements of R as a sum of direct sum components using
subscripts, e.g. given x ∈ R, we implicitly write x = x1 + x2, where x1 ∈ S ⊕ {0}
and x2 ∈ {0} ⊕ S. If c 6= 0 but ci = 0 for i = 1 or i = 2, then the augmented ring
R′ is of the form S ⊕ S ′ or S ′ ⊕ S, so Pr(R′) = Pr(S) Pr(S ′) = αpα

′
p, as desired

for (a).
Suppose instead that c1 6= 0 and c2 6= 0. Note that c = [x, y] if and only if

ci = [xi, yi] for i ∈ {1, 2}. It suffices to consider x, y ∈ A1 � A1. It follows that
there are 2p2 − 1 such elements with c /∈ [x,R], namely all x ∈ A1 � A1 with
either x1 = 0 or x2 = 0. We deduce that

Pr+c (R) =
p4 − 2p2 + 1

p6
and Pr−c (R) =

2p2 − 2

p5
+

1

p4
=

2p2 + p− 2

p5
.

By Lemma 4.2,

P2 := Pr(R′) =
p4 − 2p2 + 1

p6
+

(p2 + p− 1)(2p2 + p− 2)

p8

=
p6 + 3p3 − 2p2 − 3p+ 2

p8
.

It could be shown directly that P2 < P1 for all primes p, but let us prove
this in a way that sheds light on the underlying reason. Note that Pr(R) =
Pr+c (R) + Pr−c (R) = α2

p for both (a) and (b), so Lemma 4.2 implies that the

inequality P2 < P1 holds if and only if Pr−c (R) is larger in case (b) than in case
(a). In either case, the contributions to Pr−c (R) come from 0 and from those
nonzero elements x ∈ A1 � A1 such that c /∈ [x,R]: the former gives the same
contribution regardless of c, and each x ∈ A1 � A1 with c /∈ [x,R] contributes
1/p|R| to Pr−c (R). Thus a larger value of Pr−c (R) corresponds to there being more
elements x ∈ A1 �A1 such that c /∈ [x,R]. In case (a), c ∈ [x,R] if xj 6= 0 (where
cj is the nonzero component of c), so there are p2 elements x ∈ A1 � A1 with
c /∈ [x,R]. By contrast in case (b), we saw that there are 2p2 − 1 elements with
c /∈ [x,R]. �
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5. Proof of main results

In the results in this section, we are interested in finite rings only up to Z-
isoclinism. Thus we may always assume that R has Z-canonical form, in which
case R/Z(R) can be viewed as a subgroup of (R,+) and it makes sense to talk
about a basis of R/Z(R) with elements drawn from R. When discussing spans of
subsets in such a ring R, we indicate by a subscript whether we are working in R
or R/Z(R).

In the proofs of several results, we aim to understand rings that are Z-atomic,
meaning that they are both Z-unaugmented and Z-indecomposable.

We begin with a theorem which gives a general upper bound for Pr(R) when R
is noncommutative. In this result and its proof, M(n) denotes the matrix ring
over Zn defined by

M(n) =

{(
a b
0 0

) ∣∣∣∣ a, b ∈ Zn

}
.

Theorem 5.1. Let R be a finite noncommutative p-ring, with k := k1(R). Then

Pr(R) ≤ P (k; p) :=
pk+1 + pk − 1

p2k+1
.

Equality is attained if and only if R is Z-isoclinic to the ring M(pk), as defined
in the preceding paragraph. Furthermore, P (1; p) = αp, P (2; p) = γp, and P (k; p)
is strictly decreasing as a function of k.

Proof. By Lemma 2.6, we have elements a, b ∈ R such that pk−1c 6= 0, where
c = [a, b]. We can find a basis B = {u1, u2, u3, . . . , um} ⊂ R for R/Z(R), where
u1 = a and u2 = b. Since c is an element of maximal order in [R,R], there exists
a basis F = {c1, . . . , cm} of [R,R], with c1 = c.

Suppose that for some i > 2, [u1, ui] = n1c1 + u and [u2, ui] = n2c1 + v, where
u, v ∈ spanF ′, where F ′ := {c2, . . . , cm}. Replacing ui by u′i := ui + n2u1 − n1u2,
a simple calculation shows that [u1, u

′
i] = u and [u2, u

′
i] = v. Furthermore if ui

has order pj for some j < k, then n1 and n2 must be divisible by pk−j, so it
follows from Remark 2.7 that B remains a basis after these replacements. We
may therefore assume that the basis F of [R,R] is such that

(5.1) {[u1, ui], [u2, ui]} ⊂ spanF ′ , i > 2 .

A set of coset representatives of R/Z(R) is given by
∑n

i=1 xiui, where the
integers xi satisfy 0 ≤ xi < pki(R/Z(R)). It follows from (5.1) that [x, u1] =

∑
i nici

with n1 = −x2 and [x, u2] =
∑

imici with m1 = x1. Thus [x,R] includes an
element of order pk if either x1 or x2 is not divisible by p, and so the proportion
of elements in the ring for which |R/CR(x)| ≥ pk is at least (p2 − 1)/p2.

If k > 1 and both x1 and x2 are divisible by p, but at least one is not divisible
by p2, we similarly deduce that an additional proportion at least (p2 − 1)/p4 of
these representatives satisfy |R/CR(x)| ≥ pk−1. For k > 2, we make a similar
estimate when both x1 and x2 are divisible by p2, but at least one is not divisible
by p3. We continue in this fashion until eventually we simply estimate that the
probability that a second element will commute with x when both x1 and x2 are
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divisible by pk is 1. Adding up the various contributions, we get that

Pr(R) ≤ 1

p2k
+

k−1∑
i=0

p2 − 1

pk+2+i
=
pk+1 + pk − 1

p2k+1
,

as required.
It is not hard to see that for each of the estimates above, we get equality if

R = M(pk), and consequently we get equality in the overall bound for this ring,
i.e. Pr(M(pk)) = P (k; p).

Conversely the equality Pr(R) = P (k; p) requires that we have equality for each
of the upper bounds in the above estimation. In particular, x must be central if
x1 and x2 are zero. This forces m = 2, and so R/Z(R) must have type (k, k; p) in
view of Lemma 2.6. Moreover, the commutator group must be a Cpk , the same as
for M(pk), and it is now straightforward to verify that R is Z-isoclinic to M(pk).

The equations in the last statement are immediate, and the decreasing nature
of P (k; p) amounts to the inequality pk+1 − 1 < pk+2 − p2. Once we rewrite this
inequality as pk+2 − pk+1 − p2 + 1 > 0, it is clear that it holds for all p ≥ 2 and
k ∈ N. �

Lemma 5.2. Suppose R is a noncommutative Zp-algebra with dim[x,R] ≥ 2 for
all x ∈ R\Z(R). Then Pr(R) ≤ (pn +p2−1)/pn+2 ≤ γp, where n = dimR/Z(R).

Proof. Since dim[x,R] ≥ 2 for at least one x, R/Z(R) must have dimension n ≥ 3.
Consequently

Pr(R) ≤ 1− p−n

p2
+

1

pn
=
pn + p2 − 1

pn+2
.

This bound is a strictly decreasing function of n, so it is maximal when n = 3, in
which case it simply says that Pr(R) ≤ γp. �

Lemma 5.3. Suppose R is a Zp-algebra such that R/Z(R) has dimension at least
3 and dim[u1, R] = dim[u2, R] = 1, for some u1, u2 ∈ R such that [u1, u2] 6= 0.
Then R is not Z-atomic.

Proof. The hypotheses are invariant under Z-isoclinism, so we may assume that
R has Z-canonical form, with (R,+) = A1 � A2 as in Definition 3.6. We may
also assume that T := {u1, u2} ⊂ A1, since if this is not the case, then certainly
u′i = ui + zi ∈ A1 for some zi ∈ A2, and u′1, u

′
2 satisfy the same assumptions as

u1, u2 since A2 = Z(R).
Let V1 = span(T ). By Observation 2.2, CR(u1) and CR(u2) both have codimen-

sion 1 in R. Writing U := CR(u1) ∩ CR(u2), it follows that codimU ≤ 2. Every
nontrivial linear combination of u1 and u2 fails to commute with one or other of
these two elements, so (R,+) = U � V1. Now U is a subring of R, and u ∈ U
if and only if u + z ∈ U for all z ∈ A2, so (U,+) = U1 � A2 for some U1 ⊂ A1.
Note that U1 and V1 are complementary subspaces of A1. We define the abelian
groups U2 = [U1, U1], V2 = [V1, V1], and V = V1 + V2. Since R has Z-canonical
form, we have R2 = [R,R] = A2, and the definitions of U1, V1 then ensure that
A2 = U2 + V2. Let us write a general element x ∈ R in the form x = ux + vx + zx,
where ux ∈ U1, vx ∈ V1, and zx ∈ A2. Note that xy = (ux + vx)(uy + vy) and
[x, y] = [ux, uy] + [vx, vy].

Suppose first that U2 ∩ V2 = {0}, and so A2 = U2 � V2. Let P : A2 → U2 and
Q : A2 → V2 be the ring epimorphisms defined by P (u+ v) = u and Q(u+ v) = v
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for all u ∈ U2, v ∈ V2. Let S be the ring which coincides as an additive group
with R, but where multiplication ∗ is defined by x ∗ y = P (uxuy) + Q(vxvy),
and let us denote by [·, ·]′ commutators in S. It follows that [x, y]′ = [x, y], so
Z(S) = Z(R) = A2, and we readily deduce that R is Z-isoclinic to S. It is also
clear that S = S ′ ⊕ S ′′, where S ′ is the subring of S generated by U1, and S ′′ is
the subring of S generated by V1. Thus R is Z-decomposable.

Suppose instead that U2 ∩ V2 6= {0}. Since V2 is one-dimensional, V2 ⊂ U2. It
follows readily that R is a p-augmentation of the subring R′ generated by U1. �

In the next three theorems, we will classify up to Z-isoclinism all Z-atomic
Zp-algebras R with Pr(R) ≥ γp and dimR/Z(R) > 2. Since Z-isoclinism depends
only on the Lie ring RLie associated with a ring R, it suffices in the proofs to
consider only all possible commutators rather than all possible products. However,
since we wish to fully specify associative rings in each Z-family in the statements
of the theorems, we define the relevant products for each ring in these theorems.

Theorem 5.4. Suppose R is a Zp-algebra such that dimR/Z(R) = 3. Then R
is Z-atomic, and it is Z-isoclinic to one of the following pair of rings:

(a) R3,1 has basis {u1, u2, u3, c12, c23} and the only nonzero products of basis
elements are u1u2 = c12 and u2u3 = c23.

(b) R3,2 has basis {u1, u2, u3, c12, c13, c23} and the only nonzero products of
basis elements are u1u2 = c12, u1u3 = c13, and u2u3 = c23.

Furthermore, Pr(R3,1) = βp and Pr(R3,2) = γp.

Theorem 5.5. Suppose R is a Z-atomic Zp-algebra such that dimR/Z(R) = 4
and Pr(R) ≥ γp. Then R is Z-isoclinic to one of the following pair of rings:

(a) R4,1 has basis {u1, u2, u3, u4, c12, c24}, and the only nonzero products of
basis elements are u1u2 = c12, u2u4 = c24, and u3u4 = c12.

(b) R4,2 has basis {u1, u2, u3, u4, c12, c23, c24}, and the only nonzero products
of basis elements are u1u2 = c12, u2u3 = c23, and u2u4 = c24.

Furthermore, Pr(R4,1) = Pr(R4,2) = γp.

Theorem 5.6. Suppose R is a Z-atomic Zp-algebra such that dimR/Z(R) =
n ≥ 5. Then Pr(R) ≤ δp,n := (pn−1 + pn−2 − pn−3 + p− 1)/pn+1 < γp.

Proof of Theorem 5.4. Note that R3,1 and R3,2 are joins. The fact that the central
factor group in both cases has dimension 3, and so both rings are in Z-canonical
form, now follows from Observation 3.9(a).

The Z-atomicity of R follows easily from Lemma 2.6. We assume without loss
of generality that R has Z-canonical form, with data (A1, A2) as in Definition 3.6.
In particular, we can identify R/Z(R) with A1.

Suppose first that R has an element u1 such that dim[u1, R] = 1. We may
assume that u1 ∈ A1. By Lemma 5.3, dim[u2, R] ≥ 2 whenever [u1, u2] 6= 0. But
dim[x,R] ≤ dim(R/Z(R)) − 1 = 2, so we must have dim[u2, R] = 2 for all u2
such that [u1, u2] 6= 0. We pick such an element u2 ∈ A1.

Since codimCR(u1) = 1, there exists u3 ∈ CR(u1) ∩ A1 such that

dim spanA1
{u1, u3} = 2 .

Since u2 /∈ CR(u1), {u1, u2, u3} is a basis of A1. Furthermore [u2, u3] 6= 0, lest u3
be central. Since [u1, u2] and [u2, u3] span [u2, R], they cannot be collinear. In
summary, A1 has basis {u1, u2, u3}, the commutators [ui, uj], i < j, are nonzero
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only for (i, j) = (1, 2) and (i, j) = (2, 3), and these two commutators are not
collinear. It follows readily that R is Z-isoclinic to R3,1.

Let us calculate Pr(R3,1). It suffices to consider sums of the form x =
∑3

i=1 xiui,
where xi ∈ Zp. If x2 6= 0, then [x, u1] and [x, u3] are non-collinear, so dim[x,R] = 2.
If x2 = 0, but at least one of x1 and x3 is nonzero, then it is clear that dim[x,R] = 1
is one-dimensional. Finally, x = 0 commutes with everything. Thus

Pr(R) =
p3 − p2

p3+2
+
p2 − 1

p3+1
+

1

p3
=

2p2 − 1

p4
= βp .

It remains to consider the case where dim[x,R] = 2 for all noncentral x. Let
{u1, u2, u3} ⊂ R be a basis of A1, and let us write cij = [xi, xj]. We claim that
the commutators {c12, c23, c13} form an independent set. Suppose that this is
false, and so by symmetry we can assume that c23 = sc12 + tc13, for some s, t ∈ Zp.
Letting u′2 := u2 − tu1 and u′3 := u3 + su1, we see that [u′2, u

′
3] = 0. But u′2, u

′
3

are not in the same coset of Z(R), so dim[u′i, R] ≤ 1 for i = 2, 3, contradicting
our assumptions. It is now easy to deduce that R is Z-isoclinic to R3,2.

Finally, we calculate Pr(R3,1). It again suffices to consider sums of the form

x =
∑3

i=1 xiui, where xi ∈ Zp. Now dim[x,R] = 2 for all nonzero sums x, so

Pr(R) =
p3 − 1

p3+2
+

1

p3
= γp . �

Proof of Theorem 5.5. Note that R4,1 and R4,2 are joins. The fact that the central
factor group in both cases has dimension 4, and so both rings are in Z-canonical
form, now follows from Observation 3.9(a).

We assume without loss of generality that R has Z-canonical form, with data
(A1, A2) as in Definition 3.6. In particular, we can identify R/Z(R) with A1. By
Lemma 5.2 with n = 4, we see that there must exist u1 ∈ R with dim[u1, R] = 1.
Without loss of generality, u1 ∈ A1. By Z-atomicity and Lemma 5.3, we have the
dimensional bound dim[u2, R] ≥ 2 whenever u2 ∈ A1 is such that [u1, u2] 6= 0. We
now split the analysis into two main cases depending on whether this dimensional
bound is always strict or not.

Case 1: There exist u1, u2 ∈ A1 such that [u1, u2] 6= 0, dim[u1, R] = 1, and
dim[u2, R] = 2.

We fix u1, u2 with the specified properties. Since CR(u1)/Z(R) and CR(u2)/Z(R)
have codimensions 1 and 2, respectively, in R/Z(R), their intersection has codi-
mension at most 3 (in fact, exactly 3 because u2 ∈ CR(u2) \CR(u1)), and so there
exists a nonzero element u3 ∈ A1 which commutes with both u1 and u2. Note
that

dim spanA1
{u1, u2, u3} = 3 ,

since (CR(u1) ∩ CR(u2))/Z(R) has trivial intersection with the vector space
generated by u1+Z(R) and u2+Z(R). Choose any u4 ∈ A1 such that {u1, . . . , u4}
is a basis of A1, and define cij := [ui, uj] ∈ A2, 1 ≤ i, j ≤ 4.

Below, we change the values of ui for a specific i in various ways to achieve
various reductions. In each such case, cij := [ui, uj] is changed accordingly for
each j.

We assume as we may that c14 = 0, since if this fails, then c14 = λc12, and we
get the desired property if we replace u4 by u4−λu2. Since ui ∈ CR(u3) for i ≤ 3,
we see that dim[u3, R] = 1, and so c34 6= 0. Our unaugmented assumption now
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forces dim[u4, R] = 2. Thus dim span{c12, c24} = 2, dim span{c24, c34} = 2, and
A2 = spanS, where S := {c12, c24, c34} has dimension 2 or 3.

We next perform some reductions for the case dimA2 = 2. We must have
c12 = a2c24+a3c34, for some a2, a3 ∈ Zp. If a2 6= 0, then u := a2u2+a3u3 ∈ Q fails
to commute with u1 and also [u,R] = span{c12}. Thus dim[u,R] = dim[u1, R] = 1
and [u, u1] 6= 0. By Lemma 5.3, this contradicts the hypothesis that R is Z-atomic.
Thus c12 = a3c34 for some a3 ∈ Zp. We must have a3 6= 0, since if a3 = 0, then u1
would be central, and dimR/Z(R) < 4. Replacing u3 by a−13 u3, we reduce to the
case where c12 = c34, and so R = R4,1.

We have therefore essentially reduced Case 1 to two possible Z-canonical form
rings: either A2 has basis S, or it has basis {c24, c34} and c12 = c34. We can begin
the analysis of both of these rings together.

Let us write x :=
∑4

i=1 xiui, where xi ∈ Zp. If x2 6= 0 or x4 6= 0, we claim
that dim[x,R] ≥ 2. By symmetry, it suffices to verify this for x2 6= 0. Then
[x, u1] = −x2c12 and [x, u4] = x2c24 + x3c34 are non-collinear, so the claim is
verified. Thus

(i) dim[x,R] ≥ 2 for all x with x2 6= 0 or x4 6= 0, and
(ii) dim[x,R] ≥ 1 for all x 6= 0 with x2 = x4 = 0.

and so

(5.2) Pr(R) ≤ p4 − p2

p4+2
+
p2 − 1

p4+1
+

1

p4
=
p3 + p2 − 1

p5
= γp ,

with equality in (5.2) if and only if the inequalities in both (i) and (ii) always
hold with equality.

Suppose now that dimA2 = 3. Taking u := u2 + u3 + u4, we see that [u,R]
contains [u, u1] = −c12, [u, u2] = −c24 and [u, u3] = −c34, so dim[u,R] = 3. Thus
equality fails for x = u in (i), and we do not get equality in (5.2).

There remains only the case dimA2 = 2, and so R = R4,1. In this case, it is
readily verified that the inequalities in (i) and (ii) above holds with equality, and
so Pr(R4,1) = γp, as required.

Case 2: Whenever u1, u2 ∈ A1 satisfy dim[u1, R] = 1 and [u1, u2] 6= 0, we have
dim[u2, R] = 3.

We fix u1 with dim[u1, R] = 1. Because dim[u1, R] = 1, there are exactly p4−p3
elements u ∈ A1 with [u1, u] 6= 0 and dim[u,R] = 3 for all such u. It follows that

(5.3) Pr(R) ≤ p4 − p3

p4+3
+
p3 − 1

p4+1
+

1

p4
=
p3 + p2 − 1

p5
= γp ,

Equality above requires that dim[u,R] = 1 for the p3−1 nonzero elements u ∈ A1

that commute with u1. In this case, it follows that CR(x) = CR(y) for any distinct
pair x, y of these elements, since otherwise CR(x)∩CR(y) has codimension at least
2, and so R \ (CR(x) ∩ CR(y)) would include at least p4 − p2 elements of A1. By
our hypothesis, we would then have |R/CR(w)| = p3 for at least p4 − p2 elements
w ∈ A1, preventing equality in (5.3). Thus CR(u1) is a commutative subring of
R, with |R/CR(u1)| = p, and there is a basis {u1, u3, u4} ⊂ R of CR(u1)/Z(R)
such that ui, uj commute if i, j 6= 2. It follows that R is Z-isoclinic to R4,2, and
that R = R4,2 satisfies the requirements for equality in (5.3).

Note that, in view of Lemma 5.3 and the Z-atomic assumption, Cases 1 and 2
cover all possibilities that can arise.
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Finally, we show that both R4,1 and R4,2 are Z-atomic. Suppose R is a Zp-
algebra such that dimR/Z(R) = 4. If R is Z-decomposable, then it follows from
Lemma 2.6 that it is Z-isoclinic to a ring S = S1 ⊕ S2, where each Si/Z(Si) is
two-dimensional. It is then easily deduced that Si is Z-isoclinic to the ring M(p)
of Theorem 5.1 for i = 1, 2, and so Pr(R) = α2

p 6= γp. If instead R is Z-augmented,
then [R,R] is forced to be one-dimensional, whereas we have seen above that
there are elements x of R4,i, i = 1, 2, such that dim[x,R4,i] > 1. �

Proof of Theorem 5.6. If dim[x,R] < 2 for at most pn−2 of the cosets x+Z(R) ∈
R/Z(R), then

Pr(R) ≤ pn − pn−2

pn+2
+
pn−2 − 1

pn+1
+

1

pn
= δp,n <

pn−1 + pn−2 − pn−4

pn+1
= γp .

Thus we may assume that there are at least pn−2 + 1 of the cosets x+Z(R) with
dim[x,R] < 2. Letting S be the union of all of such cosets, and V = span(S), we
see that V has codimension at most 1 in R.

Lemma 5.3 tells us that [x, y] = 0 if x, y ∈ S, so the elements of V all commute
with each other. It follows that codimV = 1, and that V = CR(x) for all
x ∈ S \ Z(R). Since V is a commutative subring of R, every y /∈ V must fail
to commute with all non-central elements of V . Thus dimR/CR(y) = n − 1
whenever y /∈ V , and it follows that

Pr(R) =
pn − pn−1

pn+(n−1) +
pn−1 − 1

pn+1
+

1

pn
=
pn−1 + p2 − 1

pn+1
< δp,n < γp .

�

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We first investigate Rp. By Theorem 5.1, Pr(M(p2)) = γp,
so γp is a p-value. This reduces the task to the determination of all large p-values
and all large values. But again by Theorem 5.1, p-rings R with k1(R) > 1 lead
only to small p-values, so we may assume that R is a p-ring with k1(R) = 1.
Thus R/Z(R) has the form �m

i=1Cp and, in view of Observation 3.12, we may
also assume that R is a Zp-algebra. If m = 2, R is easily seen to be Z-isoclinic to
M(p), giving the value αp. Theorems 5.4, 5.5, and 5.6 tell us that βp is the only
other large p-value associated with a Z-atomic Zp-algebra R of dimension at least
3.

We next consider augmentation. According to Theorem 5.1, the only p-rings
giving rise to the p-value αp are Z-isoclinic to M(p), so we may use a Z-canonical
relative R of M(p) for augmentation. Now, [R,R] has order p. Additionally,
Pr(R) = (p2 + p− 1)/p3 and a0(R) = 1/p2. Thus if we define Rk := Augk

p(R) for
all k ∈ N, then Corollary 4.4 yields

Pr(Rk) =
p2k+2 + p− 1

p2k+3
.

It also follows from our analysis that there is a unique Z-atomic Z-family
associated with βp, namely that of R3,1 in Theorem 5.4. But we already analyzed
this algebra in Example 4.5, where we found that Pr(Augp(R, c)) = γp. Thus we
get no additional large p-values in this case, and there remain no other ways of
getting large p-values by augmentation of Z-atomic rings.
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We next consider rings that are Z-decomposable, with summands of the types
that we have already obtained. This reduces to considering products of the
p-values that we have already obtained. Since αp is a p-value, we see that αn

p is

also a p-value for all n ∈ N. Now α2
p > γp, but αn

p < γp for all n ≥ 3, since

p9(γp − α3
p) = (p7 + p6 − p4)− (p2 + p− 1)3 = (p− 1)3(p+ 1)(p3 + 2p2 + p− 1) ,

and it is clear that this last expression is positive for p ≥ 2. If we take the product
of two distinct p-values that we have already obtained, then we obtain at most
γ′p := (p2 + p− 1)(p4 + p− 1)/p8 and this is smaller than γp because for p ≥ 2,

p8(γp − γ′p) = (p6 + p5 − p3)− (p2 + p− 1)(p4 + p− 1) = (p− 1)3(p+ 1) > 0 .

Now that we have considered augmentation followed by direct sums, we need
to iterate this pair of processes until we get no additional large p-values. This
happens at the very next step: the only new p-value obtained above by taking
direct sums was α2

p, and if we now augment the associated Z-canonical form ring,
it follows from Proposition 4.7 that the largest p-value obtained is γ′p of the last
paragraph. But γ′p < γp, so we are done.

We obtain all large values by taking products of p-values for distinct primes p.
Any nontrivial product of this type gives a value at most equal to α2α3, which is
smaller than γ2. Thus we obtain all large values simply by taking the union of all
p-values that are larger than γ2 for some prime p. We already know the 2-values
in this set. As for the 3-values, we get only α3 because (34 + 3 − 1)/35 < γ2.
Finally, αp < γ2 for p ≥ 5, so we get no additional large values by using such
primes. �

Proof of Theorem 1.2. An examination of the proof of Theorem 1.1 shows that
each large p-value is associated with a unique Z-family of p-rings, and each large
value is associated with a unique Z-family of finite rings. �

Proof of Theorem 1.3. We first define rings Si, 1 ≤ i ≤ 5:

(a) S1 = M(p2).

(b) S2 = Augc
p(R0) where Pr(R0) = βp, and c is any nonzero commutator.

(c) S3 is the ring R3,2 of Theorem 5.4.

(d) S4 is the ring R4,1 of Theorem 5.5.

(e) S5 is the ring R4,2 of Theorem 5.5.

Theorem 5.1 tells us that Pr(S1) = γp, and it follows from Example 4.5 that
Pr(S2) = γp. The fact that Pr(Si) = γp for i = 3, 4, 5 follows from Theorems 5.4
and 5.5.

Next we consider the central factor groups. It is readily verified that Z(S1) =
{0}, so S1/Z(S1) ∼= Cp2 � Cp2 . For all other i, Si/Z(Si) must be of the form

�d
i=1Cp for some d. Specifically for i = 2, we have d = 5: for the unaugmented

algebra R, we have dimR/Z(R) = 3, and augmentation increases this dimension
by 2 (Observation 4.1(a)). According to Theorems 5.4 and 5.5, we have d = 3 for
i = 3, and d = 4 for i ∈ {4, 5}.

It is readily verified that [S1, S1] ≈ Cp2 and, for all i > 1, [Si, Si] must be a

Zp-vector space of the form �d
i=1Cp for some d. When i = 2, we have d = 2,

since dim[R,R] = 2 for the unaugmented ring, and augmentation always leaves
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the commutator subgroup unchanged. When i = 3, d = 3 and [S, S] has basis
{c12, c23, c13}. When i = 4, d = 2 and [S, S] has basis {c12, c24}. When i = 5,
d = 3 and [S, S] has basis {c12, c23, c24}.

The above calculations show that the rings Si provide us with four central
factor group isomorphism classes, three commutator subgroup group isomorphism
classes, and five Z-families (since no two of these rings have both isomorphic
central factor groups and isomorphic commutator subgroups).

It remains to prove that there are no other Z-families of p-rings R for which
Pr(R) = γp, so suppose R is such a ring. We assume initially that R is a Z-atomic
p-ring. For k1(R) > 1, the proof of Theorem 1.1 reveals that we get Pr(R) = γp if
and only if R is Z-isoclinic to S1. We may consequently suppose, as in the proof
of Theorem 1.1 that R is a Zp-algebra, with dimR/Z(R) = m > 1: in fact m > 2
since m = 2 forces a Zp-algebra to be Z-isoclinic to M(p) and Pr(M(p)) 6= γp.
Now Theorems 5.4, 5.5, and 5.6 tell us that the only Z-atomic options are S3, S4,
and S5.

There remains the task of considering augmentations and direct sums. The
proof of Theorem 1.1 reveals that an augmented ring R satisfies Pr(R) = γp if
and only if R is Z-isoclinic to S2, and that we cannot obtain Pr(R) = γp by taking
the direct sum of two noncommutative p-rings. �

By explicitly giving Rp ∩ [γp, 1] together with the possible Z-families, we were
easily able to deduce an explicit form for R ∩ [γ2, 1], together with the possible
Z-families. This mirrors fairly closely the characterization in the group setting
of all commuting probabilities strictly larger than γ2, together with the possible
types of [G,G] and G/Z(G) for the associated groups G: see [17] and Remark
4.4 of [3].

In the group setting, the set of all commuting probabilities greater than or
equal to 11/75 for odd order groups G, together with the possible types of [G,G]
and G/Z(G), has also been explicitly given in [3]. In view of this, we record
the corresponding result for Rodd ∩ [γ3, 1], where Rodd is the set of values of
Pr(R) as R ranges over all finite rings of odd order. Note that γ3 = 0.1440 · · · <
0.1466 · · · = 11/75.

Theorem 5.7.

Rodd ∩ [γ3, 1] = (R3 ∩ [γ3, 1]) ∪ (R5 ∩ [γ3, 1]) ∪ {α7}

=

{
32k + 2

32k+1

∣∣∣∣ k ∈ N
}
∪
{

52k + 4

52k+1

∣∣∣∣ k ∈ N
}
∪
{

1,
17

81
,
121

729
,

55

343
,

35

243

}
.

The value γ3 is associated with exactly five Z-families and all other values are
associated with a unique Z-family.

Proof. Since α3α5 < γ3, the only values in S := Rodd ∩ [γ3, 1] are p-values for
some p. Now α11 < γ3, so we need only examine p = 3, 5, 7. The 3-values are
already given by Theorem 1.1, so it remains only to examine p = 5, 7. The full set
of augmentations of α5 lie in S because 1/5 > γ3, but there are no other 5-values
in S because β5 < γ3. As for p = 7, we see that α7 > γ3, but all other values in
R7 are smaller than γ3. �

Finally, we gather together in Figure 3 all possible Z-families and group iso-
morphism types among p-rings R for which Pr(R) ≥ γp: the R-column gives a
representative of the Z-family, and the last two columns give group isomorphism
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classes. M(p) is as in Theorem 5.1, R3,1 is as in Theorem 5.4, and the rings Si

are as in the proof of Theorem 1.3.

Pr(R) R R/Z(R) [R,R]

1 commutative C1 C1

p2k + p− 1

p2k+1
, k ∈ N Augk−1

p (M(p)) �2k
i=1Cp Cp

βp R3,1 �3
i=1Cp Cp � Cp

α2
p M(p)⊕M(p) �4

i=1Cp Cp � Cp

S1 Cp2 � Cp2 Cp2

S2 �5
i=1Cp Cp � Cp

γp S3 �3
i=1Cp �3

i=1Cp

S4 �4
i=1Cp Cp � Cp

S5 �4
i=1Cp �3

i=1Cp

Figure 3. Equivalence classes for Rp ∩ [γp, 1]

The corresponding table for R∩[γ2, 1] is identical to Figure 3 for p = 2, except for
the addition of a line for α3, given by the second row of Figure 3 for (p, k) = (3, 1).
The possible Z-families in Theorem 5.7, and associated isomorphism types for
R/Z(R) and [R,R], can also be readily understood from Figure 3.

Note that similar tables for groups given in [17] and [3] also include a column for
[G,G]∩Z(G). However, we do not give a [R,R]∩Z(R) column because this is not
a Z-isoclinic invariant. Indeed, a noncommutative ring R of order p2 has trivial
center, so |R/Z(R)| = p2, and it is also clear that |[R,R]| = p. However, the Z-
canonical relative S of R satisfies the equation [S, S] ∩ Z(S) = [S, S] = Z(S)—as
do all Z-canonical form rings—so |[S, S] ∩ Z(S)| = p has order p.

References

[1] Y. Berkovich, Groups of prime power order. Vol. 1, de Gruyter Expositions in Mathematics,
46, Walter de Gruyter, Berlin, 2008; doi:10.1515/9783110208221.285.

[2] F.R. Beyl, Isoclinisms of group extensions and the Schur Multiplicator, in “Groups — St
Andrews 1981”, Ed. C.M. Campbell and E.F. Robertson, Cambridge University Press,
Cambridge, 1982.

[3] A.K. Das and R.K. Nath, A characterisation of certain finite groups of odd order, Math.
Proc. R. Ir. Acad. 111A (2011), 69–78; doi:10.3318/pria.2011.111.1.8.



28 STEPHEN M. BUCKLEY, DESMOND MACHALE, AND ÁINE NÍ SHÉ
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