
Contrasting the commuting probabilities of groups and rings
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Abstract. We contrast the set of commuting probabilities of all finite rings
with the set of commuting probabilities of all finite groups.

1. Introduction

Suppose F is an algebraic system of finite cardinality, closed with respect to
a multiplication operation denoted by juxtaposition. We define the commuting
probability of F to be

(1) Pr(F ) :=
|{(x, y) ∈ F × F : xy = yx}|

|F |2

where |S| denotes cardinality of a set S.
Much has been written on Pr(G) when G is a group, and its possible values:

see for instance [9], [14], [12], [16], [22], [8], [11], and [7]. Less has been written
on the corresponding concepts for rings and semigroups: the only papers on this
topic of which we are aware are [17] and [5] for rings, and [18], [10], [1], [21], and
[4] for semigroups.

Before proceeding, we introduce a little notation. Let G, S, and R be the
set of values of Pr(F ) as F ranges over all finite groups, finite semigroups, and
(possibly non-unital) finite rings, respectively. For each prime p, we define Gp

and Rp similarly, except that we are considering commuting probabilities of p-
groups and p-rings, meaning finite groups and rings whose orders are a power of
p.

Trivially, G, S, and R are all subsets of (0, 1]∩Q. All values in G∩ (11/32, 1]
were explicitly listed in [22], while all values in R∩[11/32, 1] were explicitly listed
in [5]. Despite the very different methods involved in finding the two sets of values
exceeding 11/32, both sets are surprisingly similar: in fact both G ∩ (11/32, 1]
and R ∩ (11/32, 1] are infinite sets, and the only difference between them is the
presence of four additional values in the former. By contrast, the situation for
semigroups is both very different and completely understood: S = (0, 1] ∩ Q
[21]. In this paper, we concentrate on the differences between groups and rings,
rather than the above similarities.

One basic observation for groups, made by Erdös and Turán [9], is that Pr(G) =
k/|G|, where k is the number of conjugacy classes in G. There is no equivalent
result for rings R and in fact, the following result says that |R|Pr(R) often fails
to be an integer.

Theorem 1. Suppose Rt is a ring of minimal order among the finite rings sat-
isfying Pr(R) = t for any t in the infinite set R ∩ [11/32, 1). Then t|Rt| is not
an integer.

We do not know of any element of R that fails to lie in G, but the following
result tells us that G \R contains infinitely many elements.
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Theorem 2. For all n ∈ N, 1/n ∈ G. However, 1/n /∈ R if n is congruent to 2
mod 4, or if n > 1 is square-free with at most 69 prime factors.

After some preliminaries in Section 2, we prove the above theorems and some
related results in Section 3, and discuss some conjectures in Section 4.

2. Preliminaries and background

Let us first list the basic terminology and notation used in this paper. All
groups and rings are implicitly assumed to be finite. Rings are not necessarily
unital1, but are always associative. We speak of possibly nonassociative rings
when we want to drop the associativity assumption.
Zn denotes the ring of integers mod n, Z∗n is the set of units in Zn, and Cn

denotes a cyclic group of order n.
Suppose R is a ring. A commutator in R always means an additive commutator

and is denoted [x, y] = xy − yx. We write [x,R] for the subgroup of (R,+)
consisting of all elements of the form [x, y], y ∈ R. The commutator subgroup
[R,R] is the subgroup of (R,+) generated by the set of all commutators [x, y],
x, y ∈ R.

If G is a group, we employ mostly similar notation: Z(G) is the center of
G, CG(x) is the centralizer of x ∈ G, a commutator is [x, y] = x−1y−1xy, the
commutator subgroup [G,G] is generated by all such commutators, and xy =
y−1xy is the conjugate of x by y.

Each of the sets R, G, Rp, and Gp, where p is prime, is a monoid under
multiplication. Certainly it is clear that each of these sets includes 1 (since
abelian groups and commutative rings of all finite orders exist). As for closure
under multiplication, this follows from the fact that Pr(G) = Pr(G1) Pr(G2) and
Pr(R) = Pr(R1) Pr(R2), whenever a group G is a direct product of finite groups
G1, G2, and a ring R is a direct sum of finite rings R1, R2; both of these equa-
tions follow from the fact that two elements in a direct product/sum commute
if and only if both pairs of factors/summands commute. It follows that 0 is an
accumulation point of each of these sets.

One difference between groups and rings is that finite rings are direct sums of
rings of prime power order, and so it follows that the numbers in R are precisely
the set of all products

∏n
i=1 ti, where n ∈ N, ti ∈ Rpi , and each pi is prime.

This difference is quite significant: indeed the only numbers we know of in G\R
arise from groups that are not direct products of groups of prime power order,
i.e. non-nilpotent groups.

In the absence of the previously-mentioned conjugacy class identity Pr(G) =
k/|G| for groups, we have to make do with the following identity for rings.

(2) Pr(R) =
1

|R|2
∑
x∈R

|CR(x)| = 1

|R|
∑
x∈R

1

|R/CR(x)|
.

Above, R/CR(x) denotes an additive factor group.
The following are important values of Pr(R) and Pr(G), so we give them the

following names throughout this paper:

αp =
p2 + p− 1

p3
, βp =

2p2 − 1

p4
, and γp =

p3 + p2 − 1

p5
.

1The set R is unchanged if we use only unital rings: see [5, Remark 2.8].
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Note that γ2 = 11/32. It is straightforward to verify (see [5, Section 2]) that

γp < α2
p < βp <

1

p
< αp , p ≥ 2 .

We will need the following characterization of large Pr(R) values, which com-
bines two results from [5] (namely, Theorem 1.1 and a consequence of Theo-
rem 1.2).

Theorem A. For all primes p,

Rp ∩ [γp, 1] =

{
p2k + p− 1

p2k+1

∣∣∣∣ k ∈ N
}
∪
{

1, βp, α
2
p, γp

}
.

Moreover

R ∩ [γ2, 1] = (R2 ∩ [γ2, 1]) ∪ {α3} =

{
22k + 1

22k+1

∣∣∣∣ k ∈ N
}
∪
{

1,
7

16
,
11

27
,
25

64
,
11

32

}
.

Moreover in both of the following situations, the equation Pr(R) = t uniquely
determines the isomorphism type of the additive group R/Z(R) where R is a
ring in the indicated class S of finite rings:

(a) t ∈ Rp ∩ (γp, 1], and S is the class of all p-rings for some prime p.
(b) t ∈ R ∩ (γ2, 1], and S is the class of all finite rings.

We also state a characterization of Rodd∩ [γ3, 1], where Rodd is the set of values
of Pr(R) as R ranges over all finite rings of odd order.

Theorem B ([5, Theorem 5.7]).

Rodd ∩ [γ3, 1] = (R3 ∩ [γ3, 1]) ∪ (R5 ∩ [γ3, 1]) ∪ {α7}

=

{
32k + 2

32k+1

∣∣∣∣ k ∈ N
}
∪
{

52k + 4

52k+1

∣∣∣∣ k ∈ N
}
∪
{

1,
17

81
,
121

729
,

55

343
,

35

243

}
.

The largest values in G and in R coincide, and the same is true of Gp and Rp

for any given prime p. For a finite non-abelian group G, Gustafson [12] proved
that Pr(G) ≤ α2, and Joseph [14] showed that if p is the smallest prime divisor
of |G|, then Pr(G) ≤ αp, with equality if and only if |G/Z(G)| = p2. By [22,
p.246] and [7, Remark 4.4(a)], we see that the elements in G ∩ (11/32, 1] are
precisely the same as the elements in R ∩ (11/32, 1] as given in Theorem A,
plus four additional values, namely 1/2, 2/5, 3/8, and 5/14. We do not know of
any explicit listing of the elements of G below 11/32, but recently Hegarty [13]
gleaned some information about the structure of G ∩ (2/9, 1].

Nilpotent groups will be used in Section 4; in view of our finiteness assumption,
nilpotent groups coincide with the class of groups that are direct products of their
Sylow p-subgroups. We are particularly interested in class 2 nilpotent groups,
namely those noncommutative groups for which [G,G] ⊆ Z(G). In particular,
we note the class 2 group identities [x, y][x,w] = [x, yw] and [y, x][w, x] = [yw, x],
which in turn imply that [xn, y] = [x, y]n = [x, yn] for all n ∈ N.

We now state a proposition that gives a pair of identities that are equivalent
to nilpotency of class at most 2; we leave the proof to the reader.

Proposition 3. The following conditions are equivalent for a group G:
(a) G is nilpotent of class at most 2.
(b) [y, x][w, x] = [yw, x], for all x, y, w ∈ G.
(c) [x, y][x,w] = [x, yw], for all x, y, w ∈ G.
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3. Proofs of main results

It follows immediately from Theorem A that R ∩ [11/32, 1) and Rp ∩ [γp, 1)
are infinite for all primes p. Thus part (b) of the following result is equivalent to
Theorem 1.

Theorem 4. Suppose Rt is a finite ring such that Pr(Rt) = t for some t < 1.
Then t|Rt| fails to be an integer in each of the following cases:

(a) t ≥ γp for some prime p, and Rt has minimal order among finite p-rings
with commuting probability t.

(b) t ≥ γ2 and Rt has minimal order among finite rings with commuting
probability t.

Note that the choice of a ring of minimal order with a particular commuting
probability is crucial in Theorem 4: if R′ is the direct sum of any finite ring R
and a commutative ring of order |R|, then Pr(R′) = Pr(R), and so |R′|Pr(R′) =
|R|2 Pr(R) is an integer by (1).

Proof of Theorem 4. Suppose first that Rt has minimal order among p-rings with
commuting probability t. By the proof of Theorem A in [5, Theorem 1.1], we
see that there is a ring R of order p2k with Pr(R) = (p2k + p− 1)/p2k+1. Also by
the case k = 1, we see that if R is a direct sum of two noncommutative rings of
order p2, then Pr(R) = α2

p. In all these cases, we have a ring R ∈ Rp such that
|R|Pr(R) is not an integer. This is already enough to imply that t|Rt| is not an
integer, since |Rt| is a divisor of |R| if Pr(R) = Pr(Rt). In fact though, it is easily
seen that the rings given here are the minimal order rings. To see this, note first
that according to Theorem A, each t > γp uniquely determines R/Z(R) among
p-rings satisfying Pr(R) = t. A table of these isomorphism types is given in [5,
Figure 2], and in each case the order of the ring R given above for this value of
t equals the order of the uniquely determined central factor group R/Z(R).

As for γp, it follows from [5, Theorem 5.1] that the ring

M(p2) =

{(
a b
0 0

) ∣∣∣∣ a, b ∈ Zp2

}
.

satisfies Pr(M(p2)) = γp. Since |M(p2)| = p4, we deduce that |Rt|Pr(Rt) is not
an integer for t = γp.

The one value remaining in part (a) is βp. In this case, we consider the vector
space A over Zp with basis {u, v, w}. We define a multiplication on A by first
defining it on all ordered pairs of basis elements (x, y): let xy = x if y = w and
xy = 0 otherwise. We then extend multiplication to all of A by distributivity.
This clearly makes A into a possibly nonassociative ring. To check that A is in
fact a ring, it suffices to check that (xy)z = x(yz) when x, y, z are basis elements.
From the definition of products of basis elements, we see that the only nonzero
products involve w as the right-hand factor. Thus (xy)z = x(yz) = 0 unless
y = z = w, in which case (xw)w = x(ww) = x for x ∈ {u, v, w}, so A is indeed
associative.

Now let x = x0w + x1u+ x2v, where xi ∈ Zp, i = 0, 1, 2. If x0 6= 0, then [x,A]
has dimension 2, since it includes [u, x] = x0u and [v, x] = x0v. Thus |CR(x)| = p
for the p3−p2 elements x for which x0 6= 0. If x0 = 0 but x 6= 0, then x commutes
with u and v but not with w, so |CR(x)| = p2 for the p2−1 elements of this type.
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Finally, |C0(0)| = p3. Since |A| = p3, it follows from (2) that

Pr(A) =
1

p6
(
(p3 − p2)(p) + (p2 − 1)(p2) + (1)(p3)

)
=

2p2 − 1

p4
= βp .

Thus |A|Pr(A) is not an integer, and so t|Rt| is not an integer for t = γp. In fact,
|A| is again of minimal order because [5, Figure 2] tells us that |R/Z(R)| = p3 if
R is a p-ring with Pr(R) = βp.

We next consider t ≥ γ2 and now Rt has minimal order among rings in R
with commuting probability t. If t > γ2, then Theorem A tells us that t ∈ Rp

for p = 2 or p = 3. Now arguing as in the proof of (a), we readily deduce that
t|Rt| is not an integer. There remains t = γ2. Among 2-rings, it follows from [5,
Figure 3] that a ring R with Pr(R) = γ2 has central factor group of order 8, 16,
or 32. The ring M(4) given above has order 16, so the minimal order ring Rt

either has order 8 or 16. In either case, t|Rt| is not an integer. �

The above proof demonstrates the difficulty or perhaps the impossibility of
defining any satisfactory analogue of group theoretic conjugacy classes in rings.

Remark 5. The above proof reveals that when t > γp (or t > γ2), the mini-
mal order p-ring (or minimal order ring, respectively) Rt has the property that
|Z(Rt)| = 1, and so |Rt| equals the uniquely determined number |R/Z(R)| for
rings R satisfying Pr(R) = t. The situation for t = γp is rather different. The
example of a ring R with Pr(R) = γp that we gave was M(p2), and |M(p2)| = p4.
There is not a unique isomorphism type of |R/Z(R)| for p-rings R satisfying
Pr(R) = γp, but [5, Figure 3] tells us that p3 is the minimal order for |R/Z(R)|
in this case. One might therefore wonder if there exists such a ring R of order p3.
However, this is impossible by the following result, because [5, Figure 3] also tells
us that |[R,R]| = p3 if R is a p-ring such that Pr(R) = γp and |R/Z(R)| = p3.

Proposition 6. If R is a finite nontrivial ring, then [R,R] is a proper subgroup
of (R,+).

Proof. Suppose for the sake of contradiction that R is a finite ring with [R,R] =
R. Writing J(R) for the Jacobson radical of R, it is straightforward to verify
that R′ := R/J(R) has the property [R′, R′] = R′. By Jacobson’s structure
theory and Wedderburn’s little theorem, R′ is a direct sum of full matrix rings
over finite fields.

Recall the well-known trace identity

tr(AB −BA) = 0, A,B ∈Mn(F ) ,

where Mn(F ) is the ring of n× n matrices over a field F , and n ∈ N. It follows
that the trace of all matrices in [Mn(F ),Mn(F )] must be zero: in particular, the
identity matrix does not lie in [Mn(F ),Mn(F )]. Consequently, R′ must be trivial
and so R = J(R), i.e. R is a finite radical ring.

But finite radical rings are nilpotent. We do not have a direct reference for
this, so let us prove it. First, suppose n ∈ N is such that nR = {0}; we
could take n = |R|. Now let S be a Dorroh extension of R defined as follows:
(S,+) = Zn⊕R, and multiplication is defined by (i, x) · (j, y) = (ij, xy+ iy+jx).
Then J(R) = R∩J(S) by [19, Lemma 12]. Moreover the radical of a left Artinian
unital ring is nilpotent [2, 15.19], so it follows that J(R) is nilpotent. However,
[R,R] = R implies that R2 = R, which is incompatible with nilpotency. �
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We now state three theorems which together imply Theorem 2. The first
lists some elements of G; part (a) is known and can be found for instance in [20,
Theorem 1.7.4] or [6, Section 5.3]. The other parts may also be known but appear
to be unpublished, so we include a proof of the full theorem for completeness.
The second and third theorems show that many of these elements of G are not
in R.

Theorem 7.

(a) 1/n ∈ G for all n ∈ N.
(b) 2/n ∈ G if n ≡ 5 (mod 8) or n ≡ 7 (mod 8).
(c) 1/q + (q − 1)/p2q ∈ G if p, q odd primes and q ≡ 1 (mod p).

Theorem 8. Below, k,m, n ∈ N, k < n, and k is coprime to m and n.

(a) k/n /∈ R, if k is even, or if k is odd and n = 2m for some odd m.
(b) k/4m /∈ R, if k/m /∈ R and k,m are odd.

Theorem 9. Suppose n ∈ N is square-free, and k ∈ N is less than, and coprime
to, n. Then k/n /∈ R if any of the following additional assumptions hold:

(a) n is divisible by 2;
(b) n is divisible by 3 and has at most 410 distinct prime factors;
(c) n has at most 69 prime factors.

Let us now prove Theorem 7. Note that the restriction on n in (b) cannot
be dropped: for instance, it follows from Gustafson’s main result in [12] that
2/3 /∈ G.

Proof of Theorem 7. We first prove (a). Certainly 1 ∈ G (abelian groups) and
1/2 ∈ G (the symmetric group S3), so suppose inductively that 1/m ∈ G for all
m < n, where n ≥ 3. If n = 2n′ is even, then 1/n ∈ G because of the semigroup
property of G and the fact that 1/2 and 1/n′ both lie in G. Suppose therefore
that n is odd.

The dihedral group with 4k elements is known to have k+ 3 conjugacy classes
for all k > 1. Thus (k + 3)/4k ∈ G for all k > 1 (and trivially for k = 1). If n is
congruent to 1 mod 4, then by the inductive hypothesis we have 4/(n+ 3) ∈ G,
and so

1

n
=
n+ 3

4n
· 4

n+ 3
∈ G .

If instead n is congruent to 3 mod 4, then the dihedral group with 12n elements
shows that (n+ 1)/4n = (3n+ 3)/4(3n) ∈ G, and the inductive hypothesis now
allows us to deduce that 1/n = [(n+ 1)/4n][4/(n+ 1)] ∈ G.

The proof of (b) is similar to that of (a), except now we need that either
8/(n+ 3) or 8/(n+ 1) lie in G. Because of the form of n, this follows from (a).

Finally, (c) follows immediately from the fact that there is a (unique) non-
abelian group of order pq when p, q are as hypothesized, and this group has
p+ (q − 1)/p conjugacy classes. �

In preparation for the proof of Theorem 8, we need the following lemma con-
cerning the p-adic valuation defined by νp(r) = k whenever r = ipk/j, i, j, k ∈ Z,
and ij is not divisible by the prime p.

Lemma 10. Suppose 0 < t < 1 and t ∈ Rp for some prime p.

(a) ν2(t) ≤ −2 if p = 2, and ν2(t) = 0 if p 6= 2.
(b) ν3(t) ≤ −2 if p = 3, and ν3(t) = 0 if p 6= 3 and t ≥ γp.
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Proof. Suppose R is a p-ring with Pr(R) = t < 1. We first prove (a). Since
1/2 /∈ R2, it follows from (1) that if p = 2, then ν2(t) ≤ −2. On the other hand
if p > 2, then |CR(x)| is odd for all x ∈ R, and so (2) implies that ν2(Pr(R)) = 0.

We next prove (b). Since 1/3, 2/3 /∈ R3, it follows from (1) that if p = 3,
then ν3(R) ≤ −2. The fact that ν3(t) = 0 whenever p 6= 3, t ∈ Rp, t ≥ γp,
follows by an examination of the values that arise in Theorem A. Calculating
mod 3, p2k + p − 1 ≡ p 6≡ 0, and this also shows that ν3(α

2
p) = 0. Next

ν3(βp) = ν3(2p
2−1) and 2p2−1 ≡ 1 (mod 3). Finally, ν3(γp) = ν3(p

3+p2−1) = 0
because p3 + p2 − 1 ≡ p3 ≡ p (mod 3). �

Proof of Theorem 8. We first prove (a). Suppose for the sake of contradiction
that R is a finite ring with Pr(R) = k/n. By hypothesis, either ν2(k/n) > 0
or ν2(k/n) = −1. We write R in the form R1 ⊕ R2, where |R1| is odd and R2

is a 2-ring, and so Pr(R) = Pr(R1) Pr(R2). Applying Lemma 10(a) to R2, we
see that either Pr(R2) = 1 or ν2(Pr(R2)) ≤ −2. On the other hand, Pr(R1) is
a product of numbers tp ∈ Rp for some finite collection of odd primes p, and
ν2(tp) = 0 for all of these primes by Lemma 10(a). Thus ν2(Pr(R1)) = 0, and
so either ν2(k/n) = 0 or ν2(k/n) ≤ −2, both of which are incompatible with our
hypotheses.

We now prove (b). Suppose Pr(R) = k/4m. Following the proof of (a), we see
that R can be written in the form R1 ⊕ R2, where R1, R2 are as before. We get
a contradiction as before unless Pr(R2) = 1/4 (since 2/4 and 3/4 do not lie in
R). But Pr(R2) = 1/4 forces Pr(R1) = k/m, so k/m ∈ R. �

In preparation for the proof of Theorem 9, we now show that the numbers αp,
βp, and γp are decreasing as functions of p. These numbers are only of interest
when p is prime, but we allow p to take on real values in [2,∞) in the following
lemma in order to use calculus.

Lemma 11. pαp, βp/αp and γp/αp are all strictly decreasing functions of p, for
p ∈ [2,∞).

Proof. Let f(p) := pαp. Then f ′(p) = (2−p)/p3 < 0 for all p > 2. Consequently,
f(p) is strictly decreasing on [2,∞).

Let g(p) := αp/βp = (p3 + p2 − p)/(2p2 − 1). Differentiating, we get g′(p) =
(2p4 − p2 − 2p + 1)/(2p2 − 1)2, and it is clear that g′(p) > 0 for all p ≥ 2.
Consequently, g(p) is strictly increasing on [2,∞).

Let h(p) := αp/γp = (p4 + p3 − p2)/(p3 + p2 − 1). Differentiating, we get

h′(p) =
p(p2 − 1)(p3 + 2p2 + 3p− 2)

(p3 + p2 − 1)2
,

and it is clear that h′(p) > 0 for all p ≥ 2. Consequently, h(p) is strictly increasing
on [2,∞). �

Proof of Theorem 9. Part (a) follows from Theorem 8(a). We next prove (b), so
suppose that n is divisible by 3. In view of part (a), we may assume that n is
odd. We write n as a product

∏s
i=1 pi of distinct prime factors, with p1 = 3. We

may assume that s > 1 since 1/3, 2/3 /∈ Rodd by Theorem B. Suppose for the
sake of contradiction that R is a finite ring with Pr(R) = k/n, and s ≤ 410.

First we note that R must be a direct sum of a commutative ring and a finite
set of noncommutative p-rings Rp, where the set S of such primes p includes pi
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for all 1 ≤ i ≤ s. Thus Pr(R) =
∏

p∈S πp, where πp := Pr(Rp) ≤ αp (because αp

is the largest number in Rp \ {1}).
Since ν3(k/n) = −1 and ν3(π3) ≤ −2 (Lemma 10), we must have ν3(πp) > 0

for some p ∈ S \ {3}. By Lemma 10, we deduce that πq < γq for some q ∈ S,
q ≥ 5. Since pαp and γp/αq are both decreasing functions of p (Lemma 11), and
since αp is the largest element in Rp \ {1}, it follows that

k = nPr(R) <
γq
αq

s∏
i=1

piαpi ≤
γ5
α5

P3(410) ,

where Pt(s) is the product of pαp, as p ranges over the smallest s primes that
equal or exceed t; here s, t ∈ N. A computation shows that

P3(410) < 4.8652 < 4.8657 <
α5

γ5
,

so k < 1, giving a contradiction.
Finally, we prove (c). We write n as a product

∏s
i=1 pi of distinct prime factors,

where s ≤ 69. By (a) and (b), we may assume that pi ≥ 5 for all i. Suppose for
the sake of contradiction that R is a finite ring with Pr(R) = k/n, and s ≤ 69.

Arguing as before, we again see that R must be a direct sum of a commutative
ring and a finite set of noncommutative p-rings Rp, where the set S of such
primes p includes at least pi for all 1 ≤ i ≤ s. Thus Pr(R) =

∏
p∈S πp, where

πp := Pr(Rp) ≤ αp.
Suppose first that πp ≤ 1/p for some divisor pi of n. Using Lemma 11, it

follows that

k = nPr(R) ≤ β5
α5

P5(69) .

But a computation shows that

P5(69) < 2.9586 < 2.9591 <
α5

β5
,

so k < 1, giving a contradiction. We may therefore suppose that πpi > 1/pi,
1 ≤ i ≤ s.

Suppose now that S includes at least one prime p that is not a factor of n. If
p ≥ 5, then it follows that

k = nPr(R) ≤ αpP5(69) .

We get a contradiction as before because 1/αp ≥ 1/α5 > 4 > P5(69). If instead
p = 3, then ν3(π3) ≤ −2 while ν3(πpi) = 0 for all i (by Lemma 10(b)). Since
ν3(k/n) ≥ 0, S must contain a prime q that does not divide 3n, and we are back
to the previous case.

We conclude that S contains the prime factors of n and no other primes, and
that πpi > 1/p for all p, so

k = nPr(R) =
s∏

i=1

piπpi > 1 .

But as in the proof of Theorem 8(a), we see that ν2(Pr(R)) = 0, and ν3(Pr(R)) =
0 by Lemma 10(b). Thus k cannot be a multiple of 2 or 3, so k ≥ 5. But
k ≤ P5(69) < 5, giving a contradiction. �
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Remark 12. Das and Nath [7, Theorem 4.3] find all values Godd of Pr(G) ≥
11/75 among odd order groups. An examination of these values reveals some
additional elements of G \R. Comparing their results with the values of Rodd ∩
[11/75], as given in Theorem B, we see that Godd ∩ [11/75] contains all of Rodd ∩
[11/75], plus five additional values, namely 5/21, 7/39, 3/19, 29/189, and 11/75.

4. Conjectures

In view of Theorem 9 and the considerable constraints on the equation Pr(R) =
1/n that become apparent when one examines various special cases, it seems
highly likely that the following conjecture is true.

Conjecture 13. 1/n /∈ R when n ∈ N is square-free.

Our second conjecture is quite a natural one in view of what we know about
R and G, but we have no other evidence in its favor.

Conjecture 14. R ⊂ G.

The groups G of which we know with the property that Pr(G) /∈ R all have
orders involving at least two distinct prime factors: for instance, dihedral groups
and their direct products featured in Theorem 7, and Pr(A4) = 1/3, where
A4 is the alternating group on four symbols, and the five additional values in
Remark 12 arise as commuting probabilities only of groups G for which |G/Z(G)|
has two distinct prime factors. We know of no number that lies in either Rp \Gp

or Gp \Rp. This leads us to the following two-part conjecture, where we cannot
rule out any possibility: logically, it is possible that either, both, or neither of
these two parts might be true.

Conjecture 15.

(a) R coincides with the set of values of Pr(G) as G ranges over all finite
nilpotent groups.

(b) R coincides with the set of values of Pr(G) as G ranges over all finite
nilpotent groups of class at most 2.

Since a finite ring is a direct sum of finite rings of prime power order, it is
arguable that the best group theoretic analogue of a finite ring is a finite nilpotent
group rather than a general finite group, leading us to Conjecture 15(a).

There is some suggestive evidence that class 2 nilpotent groups are the “right”
group theoretic analogues of noncommutative rings, and it is such thoughts that
lead us to Conjecture 15(b). By Proposition 3, class 2 nilpotent groups satisfy
the identities [x, yw] = [x, y][x,w] and [yw, x] = [y, x][w, x], and so [xn, y] =
[x, y]n = [x, yn], n ∈ N. These equations mirror the ring theoretic identities
[x, y + w] = [x, y] + [x,w] and [nx, y] = n[x, y] = [x, ny].

A second analogy between these concepts involves isoclinism. Since Pr(·) is
an isoclinic invariant for groups, a p-group G satisfies Pr(G) = Pr(H), where H
is a stem group, meaning a group of minimal order in the isoclinism family of
G. Equivalently, stem groups H satisfy the condition Z(H) ⊆ [H,H] [3, p.287].
Since it is clear that isoclinism preserves nilpotency class, it follows that if a
p-group G is of class 2, then any stem group H of G satisfies Z(H) = [H,H].

For a p-ring R, we do not in general have any containment relation between
Z(R) and [R,R]. However, according to the results of [5], there exists a p-ring S
such that Pr(R) = Pr(S) and Z(S) = [S, S]. Thus all elements of R are products
over a finite set of primes p of numbers of the form Pr(R) for some p-ring R such
that Z(R) = [R,R]. Note also that [x,G] is a subgroup of a group G if x ∈ G
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and G is class 2 nilpotent, and that this mirrors the fact that [x,R] is a subring
of a ring R for all x ∈ R.

As further justification for Conjecture 15, we note that Theorem 8 remains true
if R is replaced by Gnilp, the set of commuting probabilities of finite nilpotent
groups (or a fortiori if we replace R by the set of commuting probabilities of finite
nilpotent groups of class at most 2). The proof follows immediately once we have
an analogue of Lemma 10(a) for p-groups. Such an analogue holds because the
analogue of (2) for groups holds and 1/2 /∈ G2 (see [16]).

It seems likely that a similar analogue of Theorem 9 holds for nilpotent groups
but this would require a classification of the set Gp ∩ [γp, 1], and this does not
appear to have been carried out. However, we can at least show that the values
in G \ R exceeding 11/32 and the five exceptional values in Remark 12 all fail
to be associated with nilpotent groups. This rules out “large” probabilities as
counterexamples to Conjecture 15.

Proposition 16. If G is a finite nilpotent group then

Pr(G) /∈ {1/2, 2/5, 3/8, 5/14, 5/21, 7/39, 3/19, 29/189, 11/75} .
The proof is by examination of the possible isomorphism types of G/Z(G) for

finite groups attaining each of these values, as given in [22] and [7]. In each case
the only possible isomorphism types of G/Z(G) are non-nilpotent, and so G must
also be non-nilpotent. This proof is however suspect for Pr(G) = 5/14, since this
value was missed by Rusin but mentioned in Das and Nath in [7, Remark 4.4(a)]
with the comment that G/Z(G) is isomorphic to the dihedral group of order 14.
This group is of course non-nilpotent, but no proof is given that it is the only
possible isomorphism type of G/Z(G) in this case. Fortunately the nilpotent
group analogue of Theorem 8 comes to our rescue and rules out Pr(G) = 5/14.

An alternative proof of Proposition 16 avoiding the deeper results of Rusin and
Das-Nath can be given for all listed values t except 3/8. It relies mostly on the
following facts:

(a) If G is a noncommutative finite nilpotent group, then Pr(G) =
∏

p Pr(Gp),
where we take a product over one or more primes p, and each Gp is a
noncommutative Sylow p-subgroup of G.

(b) Writing Pr(G) = m/n for coprime m,n ∈ N, only Gp can give rise to any
particular prime factor p of n.

(c) Pr(Gp) ≤ αp < 2/p [15].

For instance in the case t = 2/5, (b) tells us that we would need a G5, but then
Pr(G) ≤ α5 < 2/5. For five of the values, all that is needed is an estimate using
(c) for a single prime. For two other values, namely the last two listed numbers,
we need to use two primes: for instance, Pr(G) ≤ α3α7 < 29/189 for t = 29/189.
The two remaining values are 1/2 and 3/8. Now Pr(G) = 1/2 would require that
we have a G2 with Pr(G2) = 1/2, but 1/2 /∈ G2 [16]. Finally, Pr(G) = 3/8 is
easily seen to imply that there is a G2 with Pr(G2) = 3/8. However, the only
proof we know of that this value is not attained by a 2-group is that of Rusin
[22].

Our last conjecture is inspired by Joseph’s three conjectures for groups [15].

Conjecture 17.
(a) Every accumulation point of R is rational.
(b) For each 0 < t ≤ 1, there exists εt > 0 such that R ∩ (t− εt, t) = ∅.
(c) R does not contain any of its accumulation points.
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Here, (a) and (b) are direct analogues of Joseph’s first and second conjectures:
we have merely replaced G by R. By contrast, (c) negates as strongly as possible
the natural analogue of Joseph’s third conjecture, which states that G contains
all of its positive accumulation points.

The one piece of evidence that we can offer in favor of (a) is that we know how
to construct positive limits of elements in R only by repeated augmentation (or
by generalized variants of such a process) as described in [5, Section 4], and such
processes always give rational limits.

Our evidence in favor of (b) is limited to the fact that limits of sequences drawn
from Rp∩ (γp, 1] have this property for each prime p (and hence the same is true
of R ∩ (γ2, 1]), as follows immediately from Theorem A. Note that if (b) is true
then R is a well-ordered set, so we could ask what is its order type: it is routine
to see that it must be at least ωω.

As evidence for (c), we note that the limits of Rp ∩ [γp, 1] do not lie in Rp,
and hence the same is true of R ∩ [γ2, 1]. Also note that 1/p is an accumulation
point of Rp (by Theorem A), and so 1/n is an accumulation point of R for all
n, whereas Theorem 8 shows that 1/n /∈ R for many values of n.
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