
A characterisation of commutator-forcing polynomials
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Abstract. We characterise those polynomials g such that a ring
R is commutative whenever g(c) = 0 for all commutators c in R.
We then discuss situations in which the more general condition
gc(c) = 0 implies commutativity, and also discuss the situation in
unital rings.

1. Introduction

Jacobson [8] proved that a ring R satisfying an identity of the form
xn(x)+1 = x, n(x) ∈ N, is commutative. Such rings are rather special,
but Herstein then showed that commutativity is equivalent to a weaker
condition involving the commutator [x, y] = xy − yx.

Theorem A (Herstein [6]). A ring R is commutative if and only if for
each x, y ∈ R there exists n(x, y) ∈ N such [x, y]n(x,y)+1 = [x, y].

Here we characterise the set of all commutator-forcing polynomi-
als, by which we mean those polynomials g(X) ∈ XZ[X] such that
a ring R is necessarily commutative if g([x, y]) = 0 for all x, y ∈ R.
Thus Theorem A says in particular that all polynomials of the form
Xn+1 −X, n ∈ N, are commutator-forcing polynomials. Note that ev-
ery commutator-forcing polynomial provides a necessary and sufficient
condition for commutativity.

Theorem 1. The following conditions are equivalent for a polynomial
g(X) ∈ XZ[X].

(a) A ring R is necessarily commutative if g([x, y]) = 0 for all x, y ∈
R.

(b) g(X) has the form f(X)±X, where f(X) ∈ X2Z[X].

Characterisations of polynomials that force a ring to be commutative
in other senses have been considered in [9], [2], and [3], but commutator-
forcing polynomials do not appear to have been considered previously.
We prove the main result in Section 2, and consider related results in
Section 3.

We wish to thank the referee for pointing out an alternative approach
to the proof of Theorem 1.
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2. Proof of Theorem 1

Let us begin by discussing some notation. If f(X) ∈ XZ[X], then
f can naturally be interpreted as a function on a ring R. We must
assume that f(X) ∈ XZ[X], rather than merely f(X) ∈ Z[X], be-
cause we do not assume that rings are unital. We always use X for
the indeterminate of a formal polynomial, so if the argument of f(∗)
involves X (e.g. f(2X) or f(f(X))), then this is a formal polynomial,
but in all other cases (e.g. f(x)), f(∗) is a value of f : R→ R for some
ring R. As usual, Z(R) denotes the centre of a ring R.

The following result shows that (a) implies (b) in Theorem 1, and
gives a special case of the converse.

Theorem B ([4, Theorem 3(c)]). The following conditions are equiv-
alent for a polynomial g(X) ∈ XZ[X].

(a) A ring R whose centre is an ideal is necessarily commutative if
g([x, y]) = 0 for all x, y ∈ R.

(b) g(X) has the form f(X)±X, where f(X) ∈ X2Z[X].

The results of [4] and [5] suggest that perhaps the centres of most
finite indecomposable non-unital rings are ideals, and this in turn sug-
gests that perhaps the ideal centre assumption in Theorem B could be
dropped, leading to Theorem 1. Note however that the ideal centre
assumption allows for an easy proof of equivalence in Theorem B, but
this method is of no use when attempting to prove Theorem 1.

Before proving Theorem 1, we first give a couple of lemmas.

Lemma 2. Suppose R is a ring, and that f(x) = x for some x ∈ R and
f(X) ∈ X2Z[X]. Then for each n ∈ N, there exists fn(X) ∈ XZ[X],
depending only on n and f , such that x = xnfn(x).

Proof. Since x = f(x), we have x = (fk)(x) for all k ∈ N, where
fk(X) denotes the k-fold formal composition of f , i.e. f 1(X) := f(X),
f 2(X) := f(f(X)), etc. Note also that fk(X) can be written as

X2k−1hk(X) for some hk(X) ∈ XZ[X] so the equation x = (fk)(x)
immediately implies that if n < 2k then x = xnfk,n(x) where fk,n(X) =

X2k−1−nhk(X). We can therefore define fn(X) to be, for instance,
fk,n(X), where k is the smallest integer such that 2k > n. �

Lemma 3. Let R be a ring and k > 1 a fixed integer. Suppose that

(i) S is a subset of R such that kx ∈ S whenever x ∈ S;
(ii) there exists f(X) ∈ X2Z[X] such that f(s) = s for all s ∈ S.

Then there exists a square-free integer m, depending only on deg(f),
such that mx = 0 for all x ∈ S.
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Proof. We may assume that f is non-zero since otherwise the result
is trivially true. Let d be the degree of f(X). Expanding the formal
polynomial f1(X) := kdf(X)−f(kX), we see that it has degree at most
d − 1. Furthermore it has nonzero terms only for the same powers of
X as f . In particular, f1(X) ∈ X2Z[X]. Moreover, f1(s) = (kd − k)s
for s ∈ S.

Since the properties of f1 are similar to those of f , we can repeatedly
lower the degree of the polynomial under consideration by continuing
this process. For instance, f2(X) := kd−1f1(X)− f1(kX) has degree at
most d− 2, and f2(s) = (kd − k)(kd−1 − k)s for s ∈ S. We eventually
get that fd−1(X) is the zero polynomial and that Mx = 0 for all x ∈ S,

where M =
∏d−2

i=0 (kd−i − k).

Let m be the product of the distinct prime factors of M , and let
n ∈ N be such that mn is divisible by M . Appealing to Lemma 2, the
equation ms = mnsnfn(ms) readily implies that ms = 0, so we are
done. �

We now prove Theorem 1 using Jacobson’s structure theory, a well-
known technique for proving commutativity theorems: see, for in-
stance, the proof of Jacobson’s theorem in [7, Theorem 3.1.2].

Proof of Theorem 1. The proof that (a) implies (b) follows a fortiori
from the corresponding implication in Theorem B, but we include the
short proof for completeness. Suppose g(X) = f(X) + a1X, where
f(X) ∈ X2Z[X] and a1 /∈ {1,−1}. Thus a1 has a prime factor p.
Consider the ring R of 3× 3 matrices over Zp of the form0 a b

0 0 c
0 0 0


The set of commutators C consists of all matrices of the above form
with a = c = 0, and it follows from the equations R · C = C ·R = {0}
that g(c) = 0 for all c ∈ C. However, R is not commutative: in fact,
Z(R) = C.

We now prove that (b) implies (a). Assume first for the sake of
contradiction that g(X) satisfies (b) and that R is a noncommutative
division ring R such that g([R,R]) = 0; this last equation is to be
interpreted as meaning that g([x, y]) = 0 for all x, y ∈ R. Thus there
is a nonzero commutator c in R. By Lemma 3, mc = 0 for some
nonzero integer m, and so R has characteristic p for some prime p. It
follows from the equation f(c) = ±c that the ring generated by c is
finite. Consequently there exists distinct integers m > m′ > 0 such
that cm = cm

′
, and so cn = c, where n = m−m′+1 > 1. Since we have

such an equation for all commutators c, it follows from Theorem A that
R is commutative, contradicting our assumption.
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Suppose next that R is primitive and that g([R,R]) = 0 for some
g(X) satisfying (b). The Jacobson density theorem tells us that R is
a dense subring of the endomorphism ring of a vector space V over a
division ring D. If R has finite dimension k > 1, then it follows that
R = V must equal the ring Mk(D) of all k × k matrices over D. But
if k > 1, and we define Aij ∈ Mk(D) to be the matrix that has 1 as
its (i, j)th entry and has zeros everywhere else, then c := A21A11 −
A11A21 = A21 6= 0 and c2 is the zero matrix, which is incompatible
with the equation g(c) = 0.

Alternatively, if R is infinite dimensional, it follows that a quotient of
a subalgebra of R is isomorphic to Mk(D), for each k ∈ N. Polynomial
commutator identities are inherited by such subquotients, so it follows
that every Mk(D) satisfies the same polynomial commutator identity as
R. Taking k > 1, we get a contradiction as before. The only remaining
possibility is that R = V has dimension 1. But then, R is itself a
division ring, and so necessarily commutative by a previous argument.

Suppose now that R is a general ring such that g([R,R]) = 0 for
some g(X) satisfying (b). It is clear that R/I inherits the commutator
identity of R, whenever I is an ideal in R. In particular, this holds
when I = J is the Jacobson radical of R. Since R/J is semiprimitive,
it is a subdirect product of primitive rings P , and these rings P in
turn inherit the commutator identity g(c) = 0. Thus each such P is
commutative, and so R/J is also commutative.

We have proved that c := [x, y] ∈ J for all x, y ∈ R. Writing our
commutator identity in the form c = c · h(c), where h(X) ∈ XZ[X],
we have an equation cd = c, where c and d := h(c) lie in J . As is well
known, an equation of the form yx = y for fixed x ∈ J(R) and y ∈ R
implies that y = 0, so the equation cd = c forces c to be 0. Since c is
an arbitrary commutator, R is commutative. �

3. Related results

Since the exponent n(x, y) depends on the commutator in Theo-
rem A, it seems plausible that a ring R might necessarily be commuta-
tive if it satisfies a condition of the form fc(c) = c for all commutators
c ∈ R, where fc(X) ∈ X2Z[X] is allowed to depend on c. Adding to
the plausibility of this result is that such an implication holds in the
class of rings R in which Z(R) is an ideal [4, Theorem 2]. We do not
know if such an implication holds in the class of general rings, but we
now consider some weaker results in this direction.

In our first such result, we add the auxiliary assumption that all
commutators are of finite order.

Theorem 4. Suppose R is a ring, and that for every commutator c ∈
R, there exists a positive integer mc and a polynomial gc(X) ∈ XZ[X]
such that

(i) gc(X) has the form fc(X)±X, where fc(X) ∈ X2Z[X],
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(ii) gc(c) = 0, and
(iii) mcc = 0.

Then R is commutative.

Proof. The proof is more or less the same as that of (b) ⇒ (a) in
Theorem 1: the only change is that condition (iii) replaces the appeal
to Lemma 3 when we are proving that a division ring R with the
hypothesised properties must have positive characteristic, and so the
subring generated by a given nonzero commutator must be of finite
order. �

What was above described as a plausible result was that Theorem 4
remains true if condition (iii) is dropped. But (iii) was used in the
proof of Theorem 4 only to deduce that a division ring R must be com-
mutative under conditions (i)–(iii). Thus we have reduced this result
to a result for division rings. However, we do not know if assuming
(i) and (ii) for all commutators c in a division ring R imply that R is
commutative.

Note though that auxiliary condition (iii) follows from Lemma 3 if
gc = gkc for some fixed k > 1, and all commutators c in R. Thus we
have the following variant of Theorem 4.

Theorem 5. Suppose R is a ring, k > 1 is an integer, and that for
every commutator c ∈ R, there exists a polynomial gc(X) ∈ XZ[X]
such that

(i) gc(X) has the form fc(X)±X, where fc(X) ∈ X2Z[X],
(ii) gc(c) = 0, and
(iii) gc = gkc.

Then R is commutative.

For the next variant, we define R0 to be R and, for all n ∈ N, we
inductively define Cn(R) to be the set of commutators of Rn−1, and Rn

to be the subring of R generated by Cn(R). In particular, C1(R) is the
set of commutators of R.

This next variant implies Theorem 4, and also shows that to deduce
commutativity, we do not need gc to be independent of c for all c ∈
C1(R): it suffices that it is independent of c ∈ Cn(R) for some n ∈ N.

Theorem 6. Suppose R is a ring such that for every c ∈ C1(R) there
exists a polynomial gc(X) ∈ XZ[X] such that

(i) gc(X) has the form fc(X)±X, where fc(X) ∈ X2Z[X], and
(ii) gc(c) = 0.

Then the following conditions are equivalent.

(a) R is commutative.
(b) There exists n ∈ N such that gc(X) can be taken to be indepen-

dent of c for all c ∈ Cn(R).
(c) There exists n ∈ N such that every c ∈ Cn(R) is of finite order.
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In order to prove Theorem 6, we first state a part of [1, Theorem 19].

Theorem C. If [x, z] and [y, z] commute for all x, y, z in a ring R,
then [x, y]4 = 0 for all x, y ∈ R.

Proof of Theorem 6. It is clear that (a) implies (b) and (c). Suppose
therefore that (b) holds. Since Cn(R) = C1(Rn−1), it follows from
Theorem 1 that Rn−1 is commutative. Once we know that Rn−1 is
commutative, we can use Theorem C and Lemma 2 to deduce by a
backward induction process that R is commutative. The proof that
(c) implies (a) is similar, except that we initially appeal to Theorem 4
instead of Theorem 1. �

We finish by considering u-commutator-forcing polynomials, meaning
those polynomials g(X) ∈ Z[X] such that a unital ring R is necessarily
commutative if g([x, y]) = 0 for all x, y ∈ R. For some other forcing
problems, the set of polynomials that force commutativity for unital
rings is much larger and quite different in nature than the corresponding
set for all rings: see [9], [2], and [3]. However, in the case of our problem,
there is no difference for polynomials g(X) ∈ XZ[X].

To see this, let us first recall the well-known Dorroh extension R′

of a general ring R. Here R′ := Z × R is a unital ring, where ad-
dition is componentwise and multiplication is given by (m,x)(n, y) =
(mn,my + nx + xy). Then R is isomorphic to a subring of R′ via the
identification of x ∈ R with (0, x) ∈ R′. Under this identification, it is
clear that the commutator set of R coincides with that of R′. More-
over, R is commutative if and only if R′ is commutative. It follows
that a u-commutator-forcing polynomial is also commutator-forcing,
and of course the converse implication is trivial. This does not quite
finish the job of characterising u-commutator-forcing polynomials be-
cause polynomials in Z[X] \XZ[X] can be interpreted as functions on
unital rings even though they cannot be so interpreted on non-unital
rings. We have the following characterisation.

Theorem 7. The following conditions are equivalent for a polynomial
g(X) =

∑n
i=0 aiX

i ∈ Z[X].

(a) A unital ring R is necessarily commutative if g([x, y]) = 0 for
all x, y ∈ R.

(b) a0 and a1 are coprime.

Proof. We first prove that (b) implies (a). In the case a0 = 0, (b) says
that a1 = ±1, and this is equivalent to (a), as discussed above. Suppose
instead that a0 6= 0. Since 0 = [1, 1] is a commutator, the commutator
identity g(c) = 0 splits into the equation a0 ·1 = 0 and the commutator
identity f(c) = 0 where f(X) = g(X)− a0. If a0 = ±1, it is therefore
trivial that R is commutative, so suppose that |a0| > 1. As is well
known, a ring satisfying a0R = 0 is a direct sum of rings Rp satisfying
pkRp = 0, where pk is the highest positive integer power of a prime p
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that divides a0. Consider such a prime power pk and associated direct
summand Rp. Since multiples of pk make no difference when g is viewed
as a function on Rp, we can discard the a0 term. Since a1 is coprime
to pk, some multiple of it is equivalent to 1 mod pk. By taking the
same multiple of g(X)−a0 and discarding a multiple of pkX, it follows
that there is a polynomial G(x) = X + F (x), with F (X) ∈ X2Z[X],
such that G(c) = 0 for all commutators c ∈ Rp, and so Rp must be
commutative by Theorem 1. Thus all direct summands Rp of R are
commutative, and so R is commutative.

For the converse, it suffices to show that g(X) is not u-commutator-
forcing if both a0 and a1 are divisible by a prime p. To see this, let R
be the ring of matrices of the formd a b

0 d c
0 0 d

 , a, b, c, d ∈ Zp . �

The commutators [x, y] in R consist of all matrices with a = c = d = 0,
so [x, y]2 = 0, and thus g([x, y]) = 0 for any such g(X).
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