
UNIFORM DOMAINS AND CAPACITY

STEPHEN M. BUCKLEY AND DAVID A. HERRON

Abstract. We characterize the class of uniform domains in terms of capacity. As a byprod-
uct of this investigation we provide results describing when a Loewner domain will be QED.

1. Introduction

The importance of the class of uniform domains in Euclidean space and their role in
geometric analysis is well established. Uniform domains were first studied by John [Joh61]
and Martio and Sarvas [MS79] and their significance in function theory is well documented;
see [Geh87], [Väi88]. Every (bounded) Lipschitz domain is uniform, but there are also
uniform domains with fractal boundary. More recently, generalizations of this concept to
domains in Heisenberg and other Carnot groups have become a focus of study; cf. [CT95],
[CGN00], [?]. See Section 2 for basic information including precise definitions, notation and
terminology.
In this paper, we prove the equivalence of (a)–(c) of the following theorem; the equivalence

of (a) and (d) is proven in [BH05]. Relevant definitions are given below in Section 2.

1.1. Theorem. For a domain D ( Rn, the following are quantitatively equivalent.

(a) D is a uniform domain.
(b) D is QED with respect to Whitney balls and a Gromov domain.
(c) D is Loewner and a k-cap domain.
(d) D is LLC with respect to arcs, quasiconvex, and a weak slice domain.

The phrase ‘quantitatively equivalent’ means that the various parameters associated with
the stated conditions depend only on each other and the dimension n. It is easy to see that
uniform domains possess all of the properties indicated above, so the significance here is that
these various conditions are sufficient for uniformity. That condition (b) implies uniformity
is a generalization of [HK96, Theorem A]; see Theorem 3.5. That (c) implies (a) follows
from Theorem 3.10, which in turn provides some information regarding the question as to
whether or not every Loewner domain in Rn is actually QED.
The equivalence of (a) and (d) is included above because (d) is in some ways related

to conditions (b) and (c). However, unlike the capacitary conditions in (b) and (c), both
conditions (a) and (d) make sense in the more general metric space setting, and we prove
their equivalence in this context in[BH05]. In the current paper, we examine only uniform
and capacitary conditions in Euclidean space Rn.
One notable corollary of Theorem 1.1 is the following; again, we prove only the equivalence

of (a), (b), (c) in this paper, and leave the equivalence of (a) and (d) for [BH05].
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1.2.Corollary. Suppose D = G\E, where G ( Rn is a uniform domain and E is a closed set
contained in G which is removable for the Sobolev space W 1,n. The following are equivalent:

(a) D is a uniform domain.
(b) D is a Gromov domain.
(c) D is a k-cap domain.
(d) D is a weak slice domain.

The class of QED domains D ⊂ Rn, which satisfy a quasiextremal distance inequality

mod(E,F ;D) ≥ C−1mod(E,F ;Rn)

for all disjoint continua E,F in D, was introduced by Gehring and Martio [GM85] and has
subsequently been studied by many authors. We examine these, along with weaker variants
such as our QEDb and ψ-QED conditions. The class of Loewner domains is a special case
of the class of Loewner spaces introduced by Heinonen and Koskela in their study [HK98]
of quasiconformal mappings of metric spaces; Heinonen’s recent monograph [Hei01] renders
an enlightening account of these ideas.
Every QED domain, and more generally every ψ-QED domain, is a Loewner domain.

The question of whether or not a Loewner domain is always QED appears to be open. We
prove the following two theorems in this direction. The first, a consequence of Theorem 3.10
and Proposition 3.7, says that the Loewner property always implies two weaker versions of
QED, while the second result lists some classes of domains for which Loewner implies the
full-strength QED condition. Precise definitions are given in §3.A and §3.B; for now we just
mention that, in the terminology of [HK91], a Euclidean domain has no large and no small
boundary components if the diameters of the components C of the boundary, C ̸= {∞}, are
bounded away from both zero and infinity.

1.3. Theorem. A Loewner domain D ( Rn is both QEDb and ψ-QED, quantitatively.

1.4. Theorem. A Loewner domain D ( Rn is QED in each of the following instances:

(a) D is a Gromov domain.
(b) Rn \D has n-measure zero.
(c) n = 2 and there is a quasiconformal self-homeomorphism of R2 mapping D to a

domain having no large and no small boundary components.

The QED condition can be weakened in two ways. First, we can assume that the defin-
ing inequality holds only for a smaller class of disjoint continua, such as closed balls or
closed Whitney balls. Second, we can replace the right-hand side of the inequality by
ψ(cap(E,F ;Rn)) where ψ : [0,∞) → [0,∞) is some homeomorphism; we then talk of a
ψ-QED condition. It is known that the QED condition for balls does not imply the full
QED condition [HK96, Example 4.1]. Nevertheless, we show that QED for Whitney balls
implies QED for all balls; this provides an answer to Question 8.5 in [HK96]. In fact we have
the following more general result.

1.5. Theorem. If D ( Rn is ψ-QED with respect to Whitney balls, then it is ψ′-QED with
respect to
all balls, where ψ′(t) = c ψ(ct) for 0 < t < 1/2 and ψ′(t) = c t for t ≥ 1, and c > 0 depends

only on n and the Whitney ball constant.

A remarkable feature of the above result is that ψ′ is linear for t ≥ 1 even if ψ grows much
more slowly.
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This document is organized as follows: Section 2 contains preliminary information in-
cluding basic definitions and terminology descriptions as well as elementary and previously
known facts. The bulk of our contributions are presented in Section 3. We introduce the no-
tion of ψ-QED domains in §3.A and demonstrate that ψ-QEDwb domains are ψ′-QEDb (see
Theorem 3.3); this useful fact also answers Question 8.5 in [HK96]. We turn our attention
to Loewner domains in §3.B and establish results relating these to ψ-QED domains. We
provide proofs of the results stated above in §3.C. Finally, in Section 4 we exhibit examples
related to our main results.

2. Preliminaries

2.A. General Information. Our notation is relatively standard. We write C = C(a, . . .)
to indicate a constant C which depends only on the parameters a, . . .; the notation A . B
and B & A both mean that there exists a constant c with A ≤ cB, and A ≃ B means
that A . B and B . A both hold. Typically a, b, c, C,K, . . . will be constants that depend
on various parameters, and we try to make this as clear as possible, often giving explicit
values. However, at times C will denote some constant whose value depends only on the
data present but may differ even on the same line of inequalities.
Throughout this article we work in Euclidean space Rn, D is a domain (i.e., an open

connected set) in Rn, and d(x, y) := |x − y| is Euclidean distance. However, see §2.G. We
denote by B(x; r) := {y : |x − y| < r} and S(x; r) := ∂B(x; r) = {y : |x − y| = r} the
open ball and sphere of radius r centered at x ∈ Rn, and write tB(x; r) := B(x; tr) for
t > 0. When working in a given domain D ( Rn, we let d(x) = dist(x, ∂D) be the Euclidean
distance from a point x ∈ D to the boundary ∂D of D; also, we write B(x) := B(x; d(x))
and, given λ ∈ (0, 1), we call λB(x) = B(x;λd(x)) a Whitney ball at x with parameter λ.
The constants Ωn, ωn−1, and σn respectively, stand for the n-measure of the unit ball

Bn = B(0; 1), the (n− 1)-measure of the unit sphere ∂Bn, and the n-dimensional spherical-
cap constant respectively.
An arc is the homeomorphic image of an interval, and it is open or closed if the interval is

open or closed, respectively. When x, y are points on an arc γ we denote by γ[x, y] the subarc
of γ between x and y (with endpoints included). If γ is merely a path, then γ[x, y] refers to
a fixed but arbitrary subpath of γ with included endpoints x, y. We denote by Γ(x, y;D), or
simply Γ(x, y), the family of all rectifiable paths in D from x to y (with endpoints included).

2.B. Quasihyperbolic Distance. The quasihyperbolic distance for a domain D ( Rn is
defined by

k(x, y) = kD(x, y) := inf
γ∈Γ(x,y;D)

ℓk(γ) := inf
γ∈Γ(x,y;D)

∫
γ

ds

d(z)
,

where ds is the Euclidean arclength element. This infimum is always achieved and the mini-
mal quasihyperbolic length paths are called quasihyperbolic geodesics . In fact, thanks to the
Hopf-Rinow theorem, we know that the metric space (D, k), which we call the quasihyper-
bolization of D, is always a proper geodesic space.
We remind the reader of the following basic estimates for quasihyperbolic distance, first

established by Gehring and Palka [GP76, 2.1]:

k(x, y) ≥ log

(
1 +

l(x, y)

d(x) ∧ d(y)

)
≥ j(x, y) := log

(
1 +

|x− y|
d(x) ∧ d(y)

)
≥

∣∣∣∣log d(x)d(y)

∣∣∣∣ .
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See also [BHK01, (2.3),(2.4)]. The first inequality above is a special case of the more general
(and easily proven) inequality,

ℓk(γ) ≥ log

(
1 +

ℓ(γ)

d(x) ∧ d(y)

)
for all γ ∈ Γ(x, y).

Following [BHK01, Chapter 7], we call a proper subdomainD ofRn aGromov domain if its
quasihyperbolization (D, k) is a Gromov hyperbolic metric space, i.e., if all quasihyperbolic
geodesic triangles are ∆-thin for some ∆ > 0, which means that each point on an edge
of any such triangle is within distance ∆ of some point on one of the other two edges.
The interested reader should consult the references in [BHK01] and [BB03] for information
concerning Gromov hyperbolicity. Let us note that uniform domains are Gromov domains
and Gromov hyperbolicity is preserved by quasiconformal mappings; in particular, all finitely
connected plane domains D ( R2 are Gromov.

2.C. Uniform Domains. Given x, y ∈ D ( Rn, an arc γ ∈ Γ(x, y;D) is an a-uniform arc,
a ≥ 1, provided that ℓ(γ) ≤ a|x− y| and

min{ℓ(γ[x, z]), ℓ(γ[y, z])} ≤ a d(z) for all z ∈ γ.

We call γ a double a-cone arc if it satisfies the inequality displayed above (the phrases cigar
arc and corkscrew are also used). A domain D is a-uniform if each pair of points in D can
be joined by an a-uniform arc.
An important characterization of uniformity is due to Gehring and Osgood [GO79, The-

orems 1,2], who proved that uniform domains are precisely those domains in which the
quasihyperbolic distance is bilipschitz equivalent to the j-distance defined in §2.B. For our
purposes we require the following seemingly weaker sufficient condition for uniformity; this
result is due to Väisälä [Väi10, 6.16, 6.17]. Here

r(x, y) = rD(x, y) :=
|x− y|

d(x) ∧ d(y)
denotes the so-called relative distance between x, y ∈ D.

2.1. Fact. Let D ( Rn be a domain. Then D is uniform if and only if there is a homeo-
morphism ϑ : [0,∞) → [0,∞), with lim supt→∞ ϑ(t)/t < 1, such that for all points x, y ∈ D,
k(x, y) ≤ ϑ (r(x, y)) . The uniformity constant depends only on ϑ, and conversely when D
is a-uniform, one can always take ϑ(t) = b log(1 + t) with b = b(a). Moreover, the estimate
k(x, y) ≤ ϑ(r(x, y)) for k(x, y) ≥ 2 is also equivalent to uniformity (since such an estimate
for small quasihyperbolic distance holds in all domains).

2.D. Modulus and Capacity. The conformal modulus (or n-modulus) of a family Γ of
curves in a metric measure space (X, d, µ) is

modΓ = inf

∫
ρn dµ,

where the infimum is taken over all Γ-admissible densities, meaning all Borel functions
ρ : X → [0,∞] satisfying

∫
γ
ρ ds ≥ 1 for all locally rectifiable curves γ ∈ Γ. Here n is

the Hausdorff dimension of X. Given a pair of disjoint compact sets E,F ⊂ X, we let
(E,F ;X) be the family of all curves joining the sets E,F in X. We also let Γ(E,F ;X)
denote the family of all rectifiable curves in (E,F ;X). The quantity mod(E,F ;X) is called
the conformal modulus (of the condensor (E,F,X)).
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The conformal, variational, or n-capacity of a pair of disjoint, compact sets E, F in the
closure of a Euclidean domain D is

cap(E,F ;D) = inf
u∈L

∫
D

|∇u|n dx,

where the infimum is taken over all functions in the class L = L(E,F ;D) = {u ∈ L1,n(D) ∩
C(D ∪ E ∪ F ) : u|E ≤ 0, u|F ≥ 1}. Here L1,n(D) is the Sobolev space of locally integrable
functions whose distributional derivatives are nth-power integrable over D. An important
property is that cap(E,F ;D) = mod(E,F ;D). These “capacity equals modulus” results
follow, for instance, from [HK98, Proposition 2.17].
We now state some geometric estimates for conformal capacity which are based on the

behavior of the family of all curves joining the sets E,F , and are mostly well-known. In this
lemma and elsewhere in the paper,

∆(E,F ) := dist(E,F )/min{diam(E), diam(F )}

is the relative distance between the pair E, F of nondegenerate disjoint continua in D.

2.2. Lemma. Let E,F be disjoint compact sets in Rn.

(a) (Spherical Ring Estimate) If E,F are separated by the spherical ring B(x; s)\B̄(x; t),
then

cap(E,F ;Rn) ≤ ωn−1

(
log

s

t

)1−n

.

(b) If both E and F are connected, then

σn log(1 + 1/∆(E,F )) ≤ cap(E,F ;Rn) ≤ Ωn(1 + 1/∆(E,F ))n.

(c) (Comparison Principle) If A,B,E, F ⊂ D with A,B also compacta, then

cap(E,F ;D) ≥ 3−n min{cap(E,A;D), cap(F,B;D), I},

where I = inf{cap(α, β;D) | α ∈ Γ(E,A;D), β ∈ Γ(F,B;D)}.
(d) (Teichmüller Estimate) If E,F are both connected, then for all x, y ∈ E and z, w ∈ F

cap(E,F ;Rn) ≥ τ

(
|x− z||y − w|
|x− y||z − w|

)
where τ(r) is the capacity of the Teichmüller ring Rn \ {−1 ≤ x1 ≤ 0 or x1 ≥ r};
i.e, τ(r) = cap([−e1, 0], [re1,∞];Rn).

(e) There exists λ = λ(n) ∈ [6, 5e(n−1)/2) such that when E, F are both connected and
∆(E,F ) ≥ 1,

21−nωn−1[log(λ∆(E,F ))]1−n ≤ cap(E,F ;Rn) ≤ ωn−1[log(∆(E,F ))]1−n.

Proof. Some of these estimates can be found in [Vuo88]: specifically, (a) follows from (5.14),
and Lemmas 5.35, 7.35, 7.38 give (c), (d), and the lower bound in (b) respectively.
The upper bound in (b) is well-known and easy to prove. Assuming δ = diam(E) ≤

diam(F ), we choose any point x ∈ E and define ρ = 1/ dist(E,F ) = 1/d in B(x; δ + d).
Then ρ is easily seen to be admissible for (E,F ;Rn) and the estimate follows.
It remains to validate (e). Put d = dist(E,F ), δ = min{diam(E), diam(F )} and assume

that d ≥ δ. The upper bound is a consequence of (a) since E,F are separated by every
spherical ring B(x; d) \ B̄(x; δ) with x ∈ E.



6 STEPHEN M. BUCKLEY AND DAVID A. HERRON

To verify the lower inequality, we use the Teichmüller estimate (d) in conjunction with
the inequality

τ(r) ≥ ωn−1/
(
log λ2n(1 + r)

)n−1
;

here λn ∈ [4, 2en−1) and the inequality holds for all r > 1; see [Vuo88, Lemma 7.22(2)].
Select points x, y ∈ E and z, w ∈ F with

d = |x− z| , |x− y| ≥ δ/2 , |z − w| ≥ δ/2.

Using the triangle inequality |y − w| ≤ |y − x|+ |x− z|+ |z − w| we deduce that

r =
|x− z||y − w|
|x− y||z − w|

≤ d

(
1

|z − w|
+

d

|x− y||z − w|
+

1

|x− y|

)
≤ 4s(1 + s)

where s = d/δ = ∆(E,F ). Since 1 + 4s(1 + s) ≤ 9s2 when s ≥ 1,

cap(E,F ;Rn) ≥ τ(r) ≥ τ (4s(1 + s)) ≥ ωn−1/
(
log 9λ2ns

2
)n−1

as desired. �
We require the following Localization Principle. We consider disjoint compact sets E,F ⊂

D ⊂ Rn and for r ≥ max{diam(E), dist(E,F )} we employ the notation Fr = F ∩Dr where
Dr is the component of {x ∈ D | dist(x,E) < r} containing E. Since the curve families
(E,Fr;Dr) increase to (E,F ;D), we know that cap(E,Fr;Dr) increases to cap(E,F ;D) as
r tends to infinity. Here we provide a quantitative version of this fact.

2.3. Lemma. Let E,F ⊂ D ⊂ Rn be disjoint compacta. Given 0 < a < b ≤ cap(E,F ;D),
there exists a constant C = C(a, b, n) ≥ 1 so that for all r ≥ C diam(E), we have both
r ≥ dist(E,F ) and

cap(E,Fr;Dr) ≥ a.

Proof. Let c1 := (b + a)/2 and c2 := (b − a)/2, and put ε := (c1/a)
1/(n−1) − 1, so that

(1 + ε)n−1a = c1. We confirm that the constant C = eL works, where

L = max

{(ωn−1

b

) 1
n−1

,
1

ε

(
2
ωn−1

a

c1
c2

) 1
n−1

}
, so

ωn−1

Ln−1
= min

{
b,
c2
2
(1 + ε−1)1−n

}
.

Let us verify the assertions for R = C diam(E). Put d = dist(E,F ) and δ = diam(E).
Thus R = Cδ. Fix any point x ∈ E and let A be the spherical ring A = B(x;R) \ B̄(x; δ).
If R < d, then A strictly separates E, F and so by Lemma 2.2(a)

cap(E,F ;D) ≤ cap(E,F ;Rn) < ωn−1/(log
R

δ
)n−1 =

ωn−1

Ln−1
≤ b

which contradicts the hypothesis that cap(E,F ;D) ≥ b.
Next, assume, for the sake of contradiction, that cap(E,FR;DR) < a. Then there is a

(E,FR;DR)-admissible density ρ1 such that a1 =
∫
DR

ρn1 < a. Select a density ρ2 which is

admissible for the spherical ring A and satisfies a2 =
∫
Rn ρ

n
2 < (1 + ε−1)1−nc2; such a ρ2

exists by our definition of A and L.
Extending ρ1 to be zero outside DR, it is readily verified that ρ := ρ1 + ρ2 is (E,F ;D)-

admissible. A routine calculus exercise using the second derivative test provides the inequal-
ity

∀ s, t, ε > 0 : (s+ t)n ≤ (1 + ε)n−1sn + (1 + ε−1)n−1tn,
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from which it follows that∫
D

ρn ≤ (1 + ε)n−1a1 + (1 + ε−1)n−1a2 < c1 + c2 = b;

but this contradicts the assumption that cap(E,F ;D) ≥ b. �
Many of our arguments are based on transferring capacity estimates between concentric

balls, a process made possible by the next result; see [HK96, Lemma 3.2]

2.4. Fact. Suppose B is a closed ball with σB ⊂ D̄ for some constant σ > 1. Then for each
ϑ ∈ (0, 1], there is a constant M =M(ϑ, σ, n) ≥ 1 such that for all compacta E ⊂ D \ σB,

cap(E, ϑB;D) ≤ cap(E,B;D) ≤M cap(E, ϑB;D).

In fact, we can take M = (1 + log(1/ϑ)/ log(σ))n−1.

2.E. Capacity of Möbius Rings. Using the well-known formula for the capacity of a
spherical ring, in conjunction with an appropriate Möbius transformation, we obtain the
following useful formula for the capacity of a pair of disjoint balls. Lacking a precise reference
for this, we record a proof.

2.5. Lemma. Assuming that

d = dist(B(x; r), B(y; s)) = |x− y| − (r + s) > 0,

we have
cap(B̄(x; r), B̄(y; s);Rn) = ωn−1Φ(t)

1−n

where

t =
d

2rs
(2r + d+ 2s) =

|x− y|2 − (r + s)2

2rs

and

Φ(t) = log
(
1 + t+

√
(1 + t)2 − 1

)
.

Here Φ is increasing and satisfies

log(1 + t) ≤ Φ(t) ≤ log(2[1 + t]) for t ≥ 0,

2√
3

√
t ≤ Φ(t) ≤ 2√

2

√
t for 0 ≤ t ≤ 1,

Φ(2t) ≤
√
2Φ(t) for t ≥ 0;

so, Φ(t) is comparable with
√
t for 0 < t ≤ 1, comparable with log(1 + t) for t ≥ 1, and

enjoys a doubling property.

Proof. Select points u, v, w, z on the line through x, y so that

d = |u− z| , 2r = |u− v| , 2s = |z − w|.
Then

|u− z||v − w|
|u− v||z − w|

=
d(2r + d+ 2s)

2r · 2s
=
t

2
.

There is a Möbius transformation which maps B(x; r) to the unit ball, B̄(y; s) to Ĉ\B(0;R)
and sends the points u, v, w, z to

u′ = e = (1, 0, . . . , 0) , v′ = −e , w′ = −Re , z′ = Re



8 STEPHEN M. BUCKLEY AND DAVID A. HERRON

respectively. Since Möbius transformations preserve cross-ratios, we have

t

2
=

|u′ − z′||v′ − w′|
|u′ − v′||z′ − w′|

=
(R− 1)2

4R
.

Thus 1 + t+
√

(1 + t)2 − 1 = R and therefore our capacity formula holds.

Since Φ′(t) = 1/
√
(1 + t)2 − 1, it is a routine exercise to validate the inequalities involving

Φ. To check the doubling property, consider F (t) =
√
2Φ(t) − Φ(2t). Then F (0) = 0 and,

since 2 · 4t(t+ 1) ≥ 4t(t+ 2), F ′(t) ≥ 0 for all t ≥ 0. �

Let us note a useful fact concerning the above formulae, writing E = B̄(x; r), F = B̄(y; s),
and δ = ∆(E,F ). First, it is easy to check that 2δ ≤ t ≤ 2δ(δ + 2) ≤ 4δmax{δ, 2}.
Combining this observation with the comparability of Φ(t) to

√
t for 0 ≤ t ≤ 1 and to

log(1 + t) for t ≥ 1 we deduce that

(2.6) cap(E,F ;Rn) ≃

{
∆(E,F )−(n−1)/2 when ∆(E,F ) ≤ 1,

[ log(1 + ∆(E,F )) ]1−n when ∆(E,F ) ≥ 1.

for any disjoint closed balls E and F in Rn. (Note that the estimate for ∆(E,F ) ≥ 1 also
follows from the bounds in part (e) of Lemma 2.2.)
We can use Lemma 2.5 to obtain a different sort of capacity transfer estimate as follows.

2.7. Lemma. Suppose A, B are disjoint closed balls in Rn and let A′ ⊂ A be the closed ball
with dist(A′, B) = dist(A,B) and diam(A′) = 1/2 diam(A). Then

cap(A′, B;Rn) ≤ cap(A,B;Rn) ≤ 2(n−1)/2 cap(A′, B;Rn).

Proof. Writing d = dist(A,B), r = 2r′ = diam(A′) and 2s = diam(B) we find via Lemma 2.5
that

cap(A,B;Rn)

cap(A′, B;Rn)
=

(
Φ(t′)

Φ(t)

)n−1

where

t =
d

2rs
(2r + d+ 2s) and t′ =

d

2r′s
(2r′ + d+ 2s) .

Now
t′

t
= 2

u+ 1

u+ 2
where u =

d+ 2s

r
,

so t ≤ t′ ≤ 2t, and hence Φ(t) ≤ Φ(t′) ≤ Φ(2t) ≤
√
2Φ(t) as desired. �

We conclude this subsection with a ‘bootstrap’ technique.

2.8. Lemma. Suppose D ⊂ Rn and there are constants τ > 0, a > 0 such that for all disjoint
closed balls A, B in D,

∆(A,B) ≥ τ =⇒ cap(A,B;D) ≥ a cap(A,B;Rn).

Then

∆(A,B) ≥ τ/2 =⇒ cap(A,B;D) ≥ b cap(A,B;Rn),

where b = b(a, n) = a/2(n−1)/2.
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Proof. Assume 2r = diam(A) ≤ diam(B) = 2s. Put d = dist(A,B) and suppose τ/2 ≤
∆(A,B) = d/2r < τ . Let A′ ⊂ A be the closed ball with dist(A′, B) = d and diam(A′) = r.
Then ∆(A′, B) = d/r ≥ τ , so Lemma 2.7 in conjunction with our hypothesis yields

cap(A,B;D) ≥ cap(A′, B;D) ≥ a cap(A′, B;Rn) ≥ (a/2(n−1)/2) cap(A,B;Rn)

as required. �

2.F. The k-cap Condition. Suppose C > 0 and 0 < λ ≤ 1/2. A proper subdomain D of
Rn is a (C, λ)-k-cap domain provided

∀ x, y ∈ D : k(x, y) ≥ 2 =⇒ k(x, y)n−1 cap(λB̄(x), λB̄(y);D) ≤ C.

This is the two-sided version of a condition introduced by the first author in [Buc04] to study
quasiconformal images of Hölder domains. As explained on p.26 of that paper, a (C, λ)-k-cap
condition implies a (C1C, λ

′)-k-cap condition for some C1 = C1(λ, λ
′, n). We mainly consider

the case λ = 1/2, and call a (C, 1/2)-k-cap domain simply a C-k-cap domain.
Note also that a condition in the reverse direction to the k-cap condition holds in all

domains; i.e., for 0 < λ ≤ 1/2, there exists c = c(λ, n) > 0 such that

∀ x, y ∈ D : k(x, y) ≥ 2 =⇒ k(x, y)n−1 cap(λB̄(x), λB̄(y);D) ≥ c.

For instance, this last estimate is implicit in the proof of [HK96, Theorem 6.1]. Thus in a
k-cap domain D, we have cap(λB̄(x), λB̄(y);D) ≃ k(x, y)1−n, with constants of comparison
dependent only on λ, n, and the k-cap parameters.
Every uniform domain in Rn is a k-cap domain, and the class of k-cap domains is invariant

under quasiconformal mappings (with a quantitative change of parameter C). For proofs of
these statements see [Buc04].

2.G. Spherical Distance. In parts of the proofs of Theorems 1.1 and 1.4, we require cer-
tain information concerning domains equipped with the spherical metric rather than the
Euclidean metric. In particular, we assert that the classes of uniform, QED, Loewner, Gro-
mov hyperbolic, and k-cap domains are all the same whether we use the spherical metric or
the Euclidean one. Here we explain these ideas.
First, recall that the spherical distance s(x, y) is simply the length of the shorter subarc

of the great circle on Ĉ = ∂Sn joining the points corresponding to x, y under (equatorial)
stereographic projection. Alternatively, s(x, y) = 2 arcsin[q(x, y)/2] where q(x, y) is the
chordal distance,

q(x, y) =


2|x− y|√

1 + |x|2
√

1 + |y|2
when x ̸= ∞ ̸= y,

2√
1 + |x|2

when x ̸= ∞ = y.

That is, q(x, y) is the Euclidean distance (in Rn+1 ⊃ ∂Sn) between the points corresponding
to x, y under stereographic projection. It is easy to see that the Euclidean and chordal cross
ratios are identical. Since q(x, y) ≤ s(x, y) ≤ (π/2)q(x, y), we deduce that the Euclidean
and spherical cross ratios are bilipschitz equivalent.
A routine exercise shows that the spherical modulus of any family of curves in Rn equals

its Euclidean modulus. (The identity map (D, d) → (D, s) is conformal and the conformal
modulus is a conformal invariant. :-) It therefore follows that a domain is spherically QED
if and only if it is Euclidean QED.
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To see that the same is true for the Loewner condition, we appeal to a result of Brania
and Yang [BY02] who showed that Loewner spaces can be characterized by a so-called
controlled modulus condition. This latter concept is described in terms of cross ratios and
it is straightforward to see that a spherical controlled modulus condition is equivalent to a
Euclidean one. Thus a domain is spherically Loewner if and only if it is Euclidean Loewner.
In a manner entirely analogous to §2.B, we can define a spherical quasihyperbolic distance

on any domain D ( Rn equipped with the spherical metric; see [BHK01, Chapter 2]. This
spherical quasihyperbolic distance is always bilipschitz equivalent to the Euclidean quasi-
hyperbolic distance; see [BB05]. It therefore follows that a domain is spherically Gromov
(i.e., its spherical quasihyperbolization is Gromov hyperbolic) if and only if it is Euclidean
Gromov; except for a quantitative change in the value of ∆, it does not matter whether k is
the Euclidean or spherical quasihyperbolic metric since they are bilipschitz equivalent.
Next we explain why spherical uniformity is the same as in the Euclidean setting. One

way to see this is to use the so-called Möbius cigars as explained in [Väi88, 2.7 and 2.10].
Again, as these are defined in terms of cross ratios, it is routine to validate our assertion.
We have two possible definitions of the k-cap condition for a domain D ( Rn depending

on whether we view D as a domain in Euclidean space or on the Riemann sphere. These
definitions are equivalent up to a quantitative change in the parameter C, because capac-
ity is a conformal invariant and the Euclidean and spherical quasihyperbolic distances are
bilipschitz equivalent.
Every uniform domain in Rn or in Ĉ is a k-cap domain, and the class of k-cap domains

is invariant under quasiconformal mappings (with a quantitative change of parameter C).
For proofs of these statements in the Euclidean case, see [Buc04]; the spherical variants are

proved similarly. According to results in [BB03], proper subdomains of Ĉ are (spherical)
Gromov domains if and only if they satisfy a certain (spherical) slice condition which in
turn implies the k-cap condition [Buc04]. Since the spherical quasihyperbolic distance is
bilipschitz equivalent to the Euclidean quasihyperbolic distance, it follows that all Gromov
domains in Rn are also k-cap domains.

3. Domains satisfying capacity conditions

In this section we study Loewner and QED-type conditions. These have the general form

(3.1) cap(E,F ;D) ≥ Ψn(E,F )

where E, F are disjoint continua in a domain D ⊂ Rn and the positive “function” Ψn

depends (in some way) only on E, F and possibly the dimension n.
We call D a ψ-QED domain if (3.1) holds with Ψn(E,F ) = ψ(cap(E,F ;Rn)) where

ψ : [0,∞) → [0,∞) is a homeomorphism. The most important, and original, inequalities of
this form are theM-QED conditions corresponding to ψ(t) = t/M for some constantM ≥ 1.
When we speak of a QED domain or a QED condition, we always mean an M -QED domain
or an M -QED condition for some M ≥ 1.
We callD a ϕ-Loewner domain, or simply a Loewner domain, if (3.1) holds with Ψn(E,F ) =

ϕ(∆(E,F )), where ϕ : (0,∞) → (0,∞) is decreasing; see §3.B. By parts (b) and (e) of
Lemma 2.2, every QED domain, and more generally every ψ-QED domain, is a Loewner
domain. Implications in the converse direction are one of the main themes of this section.
We take this opportunity to mention a nice result due to Bonk and Kleiner, [?, Proposition

3.1], which is related to the problem of determining when some capacity inequality gives the
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full Loewner condition. Note that an infinite cylinder (see our Examples 4.2, 4.3) fails to
satisfy their capacity hypothesis.

3.A. QED-type conditions. We say that D ⊂ Rn is a ψ-QED domain if ψ : [0,∞) →
[0,∞) is a homeomorphism and for all disjoint continua E, F in D,

cap(E,F ;D) ≥ ψ(cap(E,F ;Rn)).

Clearly, ψ(t) ≤ t is a necessary restriction on such ψ. However, while our definition asks
that ψ be a homeomorphism, it is straightforward to verify the following useful shortcut.

3.2. Lemma. Suppose ψ : [0,∞) → [0,∞) satisfies: ψ(t) → 0,∞ as t → 0,∞ respectively,
and for each τ > 0, inf{ψ(t) : t ≥ τ} > 0. Then there exists a homeomorphism ξ : [0,∞) →
[0,∞) which satisfies ψ(t) ≥ ξ(t) for all t > 0.

The typical nonlinear functions ψ that arise in the literature have the form ψp,M(t) =
M−1min{tp, t1/p} with p,M ≥ 1, a condition we call M -QEDp, or simply M -QED if p = 1.
As in [HK96] we can consider the location of the continua E, F as well as looking at

special types of continua. In particular we can relax the ψ-QED inequality by requiring it to
hold only for all disjoint closed balls (or just closed Whitney balls) to get the class ψ-QEDb

(or ψ-QEDwb, respectively). To be precise, consider inequalities of the form

cap(µxB̄(x), µyB̄(y);D) ≥ ψ
(
cap(µxB̄(x), µyB̄(y);Rn)

)
where µxB̄(x) and µyB̄(y) are disjoint, and 0 < µx, µy ≤ 1. We say that D ⊂ Rn is a
ψ-QEDb domain if all such inequalities hold, and that it is a (ψ, µ)-QEDwb domain if such
inequalities hold whenever 0 < µx = µy = µ < 1. When the parameters M or µ are
irrelevant, we drop them from this notation.
Every a-uniform domain in Rn is M -QED for some M =M(a, n); this follows easily from

Jones’ extension result for Sobolev spaces [Jon81, Theorem 1] (see also the work [GLV79] of
Gol′dshtein, Latfullin, Vodop′yanov). Also it is trivially true that

ψ −QED =⇒ ψ −QEDb =⇒ ψ −QEDwb.

The converse of the first implication fails; see [HK96, Example 4.1] and Example 4.3. Below
we prove that the second implication is reversible modulo a quantitative change in ψ.
Our next result actually implies Theorem 1.5. It says that the ψ-QEDwb condition is

self-improving in two ways: first, an inequality for fixed size Whitney balls implies a similar
inequality for all balls in D, and second, the function ψ, which might a priori grow very
slowly, can be assumed to grow linearly for t ≥ 1. As a special case of this result, let us
note that all QEDwb domains are actually QEDb domains, and more generally, all QEDp

wb

domains are QEDp
b domains, p ≥ 1.

3.3. Theorem. Suppose that D ( Rn is (ψ, µ)-QEDwb. Then D is ψ′-QEDb where ψ′

depends only on n, µ, and ψ. In fact, we can take ψ′(t) = c ψ(ct) for 0 < t < 1 and
ψ′(t) = c t for t ≥ 1, where c = c(n, µ) > 0.

Proof. We break our proof into two parts, the first half of which is to prove the desired
inequality for subWhitney balls. That is, we establish the desired capacity inequality for all
(disjoint) balls of the form E := µxB̄(x) and F := µyB̄(y) where 0 < µx, µy ≤ µ.
Let us define µ′ := (1 + µ)/2, E ′ := µB(x), E ′′ := µ′B(x), F ′ := µB(y), F ′′ := µ′B(y),

d := dist(E,F ), and d′ := dist(E ′, F ′), so that E ⊂ E ′ ( E ′′ and F ⊂ F ′ ( F ′′. According to
(2.6), cap(E,F ;Rn) is large exactly when ∆(E,F ) is small, and vice versa. Thus it suffices
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to prove a QED inequality for the triple (E,F ;D) when ∆(E,F ) is small, and a suitable
ψ′-QED inequality otherwise.
Our “small ∆(E,F )” case is when E ′′ and F ′′ overlap. Then B(x)∪B(y) is an a-uniform

domain for some a = a(µ), and so M -QED for some M =M(n, µ). Thus

cap(E,F ;D) ≥ cap(E,F ;B(x) ∪B(y)) ≥M−1 cap(E,F ;Rn),

as desired.
Suppose instead that E ′′ and F ′′ are disjoint. We proceed as in the proof of Proposition

3.5 in [HK96]. We consider three subcases. First, suppose µx and µy are both at least as
large as µ/2. Then two applications of the transfer estimate Fact 2.4 produce

cap(E,F ;D) ≥M−1 cap(E,F ′;D) ≥M−2 cap(E ′, F ′;D) ≥
≥M−2ψ(cap(E ′, F ′;D)) ≥M−2ψ(cap(E,F ;D))

where M =M(µ, n) = [1 + log 2/ log((µ+ 1)/2µ))]n−1.
Second, suppose µx < µ/2 ≤ µy. As above, we use the transfer estimate to see that

cap(E,F ;D) ≥M−1 cap(E,F ′;D). Next, note that

cap(E,F ′;Rn) ≤ min{cap(E, ∂E ′;Rn), cap(E ′, F ′;Rn)} ≤ C(n).

According to the Comparison Principle (Lemma 2.2(c)),

cap(E,F ′;D) ≥ 3−n min{cap(E, ∂E ′;D), cap(E ′, F ′;D), I}
where

I = inf{cap(α, β;D) | α ∈ Γ(E, ∂E ′;D), β ∈ Γ(E ′, F ′;D)}.
Each β ∈ Γ(E ′, F ′;D) contains a subcurve β′ ∈ Γ(∂E ′, ∂E ′′;E ′′). Note that ∆(α, β′) ≤
4µ/min{µ, 1− µ}. Since µ′B(x) is uniform, we deduce that

cap(α, β;D) ≥ cap(α, β′;µ′B(x)) ≥ N−1 cap(α, β′;Rn)

(where N = N(n)) and thus I ≥ c(µ, n) > 0. Now

cap(E, ∂E ′;D) = cap(E, ∂E ′;Rn) ≥ cap(E,F ;Rn) ≥ ψ(cap(E,F ;Rn)).

Also,

cap(E ′, F ′;D) ≥ ψ(cap(E ′, F ′;Rn)) ≥ ψ(cap(E,F ;Rn)).

Thus,

cap(E,F ;D) ≥M−1 cap(E,F ′;D) ≥ b ψ(cap(E,F ;Rn))

where b = b(µ, n) = (3nM)−1max{1, c/C}.
Finally, suppose both µx < µ/2 and µy < µ/2. Note that

cap(E,F ;Rn) ≤ min{cap(E, ∂E ′;Rn), cap(F, ∂F ′;Rn), cap(E ′, F ′;Rn)} ≤ C(n).

Again by the Comparison Principle (Lemma 2.2(c)),

cap(E,F ;D) ≥ 3−n min{cap(E,F ′;D), cap(F, ∂F ′;D), J};
here, as above,

J = inf{cap(α, β;D) | α ∈ Γ(F, ∂F ′;D), β ∈ Γ(E,F ′;D)} ≥ c(µ, n).

Also, by our previous argument, cap(E,F ′;D) ≥ b ψ(cap(E,F ;Rn)). Thus once more we
deduce the wanted inequality cap(E,F ;D) ≥ c(µ, n)ψ(cap(E,F ;Rn)).
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We have now verified the desired capacity inequality for all subWhitney balls. We proceed
to the general case where E := µxB̄(x) and F := µyB̄(y) are an arbitrary pair of disjoint balls
in D̄. (Thus 0 < µx, µy ≤ 1.) By changing the definition of ψ if necessary, we now assume a
ψ-QED inequality for all subWhitney balls. As above, it suffices to prove a suitable ψ′-QED
inequality for the triple (E,F ;D) when ∆(E,F ) is large, and a QED inequality otherwise.
Assume that diam(E) ≤ diam(F ). Choose a closed ball F ′ ⊂ F with dist(E,F ′) = d :=

dist(E,F ) and diam(F ′) = diam(E). Then ∆(E,F ′) = ∆(E,F ). Here our ‘easy’ case is
when ∆(E,F ) ≥ 1/100, for suppose this holds. Then ∆(E,F ′) ≤ ∆(µE, µF ′) . ∆(E,F ′),
and thus according to (2.6),

cap(E,F ;Rn) ≃ cap(E,F ′;Rn) ≃ cap(µE, µF ′;Rn),

where the comparability constants depend only on n and µ. Therefore, it follows that

cap(E,F ;D) ≥ cap(E,F ′;D) ≥ cap(µE, µF ;D) ≥
≥ ψ(cap(µE, µF ;Rn)) ≃ ψ(cap(E,F ′;Rn)) ≃ ψ(cap(E,F ;Rn)).

Now suppose instead that ∆(E,F ) < 1/100. By translating, we may assume that x = 0
and E = B̄(0; r); thus r = µxd(x) > 50d. Note that by (2.6),

cap(E,F ;Rn) ≃ ∆(E,F )(1−n)/2 ≃ (d/r)(1−n)/2.

Define A to be the set of all z ∈ E such that |z| ≥ r − 2d and dist(rz/|z|, F ) ≤ 2d. Thus

A ∩ ∂E is an annular cap with radius comparable to
√
rd and thickness 2d, and so the

n-measure of A is

|A| ≃ d · (rd)(n−1)/2.

Consider a closed ball B of the form B̄(z;µd), z ∈ A, |z| = r−d. Let H be the hyperplane
equidistant from E and F (so H is normal to the line segment [x, y]). Let B′ be the reflection
of B across H. Then B′ ⊂ F ′ ⊂ F and dist(B,B′) ≤ 5d, so ∆(B,B′) ≤ 5/2µ. By Lemma 2.5
(cf. (2.6)), cap(B,B′;Rn) ≥ c = c(µ, n) > 0, and so by the first part of our proof,

cap(B,B′;D) ≥ ψ(c).

Appealing to the Localization Principle (Lemma 2.3), we can select a constant C ≥ 6, which
depends only of n and ψ(c), such that

cap(B,B′;D′) ≥ ψ(c)/2

where D′ is the component of D ∩B(z;Cd) containing B.
The collection of all closed balls B = B̄(z;µd), z ∈ A, |z| = r − d has the property that

the dilated balls K · B cover A provided K > 1/µ. Fixing K := C/µ, we may select a
subcollection {Bi = B(zi;µd) | 1 ≤ i ≤ m} of the original balls which satisfy two criterion:
the balls K · Bi are pairwise disjoint, and the balls 5K · Bi cover A. Then m is comparable
with the ratio of the volumes of A and Bi, so

m ≃ |A|/|Bi| ≃ d · (rd)(n−1)/2/dn ≃ ∆(E,F )−(n−1)/2 ≃ cap(E,F ;Rn);

the comparability constants depend only on n, µ and K = C/µ.
As in a previous paragraph, we reflect each Bi across H to obtain B′

i ⊂ F ′ ⊂ F . There
is an associated domain Di (namely, the component of D ∩K · Bi containing Bi) with the
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property that cap(Bi, B
′
i;Di) ≥ ψ(c)/2. Since the balls K ·Bi are pairwise disjoint, we get

cap(E,F ;D) ≥
m∑
i=1

cap(Bi, B
′
i;Di) ≥

ψ(c)

2
m ≃ ∆(E,F )−(n−1)/2 ≃ cap(E,F ;Rn).

�

3.4. Corollary. Every QEDwb domain is in fact QEDb.

Our next main result follows; it is the crucial ingredient used to establish Theorem 1.1.

3.5. Theorem. A domain in Rn is uniform if and only if it is a k-cap domain and ψ-QEDwb

where ψ satisfies the growth condition limu→0+ e
c/uψ(un−1) = ∞ for all c > 0. All parameters

depend only on each other and the dimension n.

Proof. It is enough to establish the sufficiency of these conditions. We follow the proof of
[HK96, Theorem A], but see also [Buc04, Theorem 2.8].
Assume that D is ψ-QEDwb and satisfies a (Ck, λ)-k-cap condition, where λ := 1/3. Let

x, y ∈ D and assume that

d(x) ≤ d(y) < |x− y| , |x− y| ≥ 3d(x)

2
, and k(x, y) ≥ 2.

Put Az = λB̄(z) for z = x, y and note that dist(Ax, Ay) > min{diam(Ax), diam(Ay)}. It
now follows, as in [HK96, p.346], that

cap(Ax, Ay;R
n) ≥ C (log r(x, y))1−n

where C = C(n) = ωn−1(2[1 + log(3λ(n)/2)/ log(3/2)])1−n and λ(n) is the constant from
Lemma 2.2(e).
Utilizing the above estimate together with the k-cap and ψ-QEDwb conditions we obtain

k(x, y) ≤ ϑ (r(x, y)) where ϑ(t) = [Ck/ψ(C/ log
n−1 t)]1/(n−1).

We take c = (n− 1)C ′, where C ′ = C(n)1/(n−1), in our hypothesized growth condition, and
then make the change of variable t = eC

′/u to deduce that limt→∞ ϑ(t)/t = 0. An appeal to
Fact 2.1 confirms that D is uniform. �

Notice that the above argument only used the growth estimate on ψ with the one constant
c = (n− 1)C1/(n−1) and only requires the capacity inequalities

cap(3−1B̄(x), 3−1B̄(y);Rn) . cap(3−1B̄(x), 3−1B̄(y);D) . k(x, y)1−n

for appropriate points x, y in D.

3.B. Loewner versus QED. We call D ⊂ Rn a ϕ-Loewner domain if ϕ : (0,∞) → (0,∞)
and for all non-degenerate disjoint continua E, F in D,

∆(E,F ) ≤ t =⇒ cap(E,F ;D) ≥ ϕ(t).

We may (and do) always assume that the Loewner control function ϕ is a decreasing homeo-
morphism. Moreover, we have the following special case of [HK98, Theorem 3.6].

3.6. Fact. If D is a Loewner domain in Rn, then it is Loewner for some control function ϕ
that is comparable with log(2/t) for t ≤ 1, and with (log 2t)1−n for t ≥ 1.
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Combining the above fact with parts (b) and (e) of Lemma 2.2, we see that a Loewner
domain certainly satisfies a QED inequality for all pairs E,F with ∆(E,F ) ≥ 1. We now
examine the links between Loewner and QED-type conditions.

3.7. Proposition. The ψ-QED and ϕ-Loewner conditions are equivalent. This equivalence
is quantitative in the sense that ψ and ϕ depend only on each other and n.

Proof. We appeal repeatedly to the capacity estimates in parts (b), (e) of Lemma 2.2, so we
abbreviate these as (b), (e) below. It is immediate from (b) and (e) that ψ-QED domains
are Loewner. Suppose therefore that D ( Rn is ϕ-Loewner, and let us prove a ψ-QED
condition.
If ∆(E,F ) ≥ 1, then by (e) we have

cap(E,F ;D) ≥ ϕ(∆(E,F )) ≥ ψ1(cap(E,F ;R
n)),

where ψ1(t) = ϕ
(
exp[(ωn−1/t)

1/(n−1)]
)
. If ∆(E,F ) ≤ 1, then (b) implies that cap(E,F ;Rn) ≤

Ωn(2/∆(E,F ))n, and so

cap(E,F ;D) ≥ ϕ(∆(E,F )) ≥ ψ2(cap(E,F ;R
n)),

where ψ2(t) = ϕ(2(Ωn/t)
1/n).

By (b), ∆(E,F ) ≥ 1 whenever cap(E,F ;Rn) ≤ C1 := σn log 2, and ∆(E,F ) ≤ 1 whenever
cap(E,F ;Rn) ≥ C2 := 2nΩn. Thus we deduce a ψ-QED condition, where

ψ(t) =


ψ1(t), t < C1,

min{ψ1(t), ψ2(t)}, C1 ≤ t ≤ C2,

ψ2(t), t > C2.

�

It is clear from the above proof that the restricted versions of Loewner and ψ-QED, where
we assume these conditions only for balls or Whitney balls, are similarly equivalent.

3.8. Corollary. Every domain which satisfies a Loewner condition for fixed size Whitney
balls actually satisfies a Loewner condition for all disjoint balls.

Here is a surprisingly useful consequence of the above.

3.9. Corollary. Every Loewner or ψ-QED domain in Rn is in fact ξ-QED for some homeo-
morphism ξ : [0,∞) → [0,∞) which satisfies lim inft→0+ e

c/tξ(tn−1) = ∞ for all c > 0.

Proof. Let D ⊂ Rn be ψ-QED. By Proposition 3.7, D is ϕ-Loewner, and we can choose ϕ as
specified in Fact 3.6. Then from the proof of Proposition 3.7, we also have that D is ξ-QED
where

ξ(t) = ψ1(t) = ϕ
(
exp[(ωn−1/t)

1/(n−1)]
)

for t < C1 = σn log 2.

Thus,

lim
t→0+

ec/tξ(tn−1) = lim
t→0+

ec/tψ1(t
n−1) ≃ lim

t→0+
ec/ttn−1 = ∞,

and so ξ satisfies the desired growth condition. �

Next we provide a sufficient condition for a domain to be QEDb.
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3.10. Theorem. Suppose a domain D ⊂ Rn has the property that there are constants C > 0,
τ > 0 such that whenever A,B are disjoint balls in D with ∆(A,B) ≥ τ ,

cap(A,B;D) ≥ C/ (log∆(A,B))n−1 .

Then D is M-QEDb where M =M(C, τ, n). In particular, every Loewner domain is QEDb.

Proof. In view of Theorem 3.3, it suffices to verify that the domain D is (M, 1/2)-QEDwb. By
Lemma 2.2(e), the hypotheses imply that cap(A,B;D) ≥ (C/ωn−1) cap(A,B;Rn), whenever
∆(A,B) ≥ τ ′ := max{τ, 1}. Repeated applications of Lemma 2.8 provide, for each ε > 0, a
constant c = c(ε, τ, C) > 0 (e.g., if ε = τ ′/2m, c = ωn−1/

(
C2m(n−1)/2

)
works) such that

∆(A,B) ≥ ε =⇒ cap(A,B;D) ≥ c · cap(A,B;Rn)

for any pair of disjoint closed balls A, B in D.
It therefore suffices to prove a QED-type inequality for A = 1/2B̄(x), B = 1/2B̄(y) when

∆(A,B) ≤ 1/8. But then B(x)∪B(y) is a uniform domain, and such a QED-type inequality
follows, with M =M(n), as in the “small ∆(E,F )” case in the proof of Theorem 3.3.
Fact 3.6 tells us that Loewner domains satisfy the hypotheses, and so are QEDb. �

3.C. Proofs of Introductory Theorems. Here we corroborate the results described in
the introduction. Recall that a domain D is c-linearly locally connected , abbreviated c-LLC,
provided points in D ∩B(x;R) (respectively, in D \ B̄(x;R)) can be joined by a continuum
in D ∩ B(x; cR) (respectively, in D \ B̄(x;R/c)). Uniform, QED and Loewner domains all
enjoy this property; see [GM85, Lemma 2.11] and [HK98, Theorem 3.13].

First we point out that Theorem 1.5 is an immediate consequence of
Theorem 3.3. Next, we confirm that Loewner domains are both QEDb and ψ-QED.

Proof of Theorem 1.3. According to Theorem 3.10 and Proposition 3.7, every Loewner do-
main is both QEDb and ψ-QED. �
Now we demonstrate that Loewner implies QED under certain conditions. In part (a) of

Theorem 1.4, we employ the spherical metric; the reader is encouraged to review §2.G.

Proof of Theorem 1.4. We first prove (a). Since D is assumed to be a Loewner domain, it
is also spherically Loewner and therefore (thanks to [HK98, Theorem 3.13]) also spherically
LLC. Moreover, D is a spherical Gromov domain too; thus D is an LLC Gromov subdo-
main of Ĉ and so it is spherically uniform by [BHK01, Proposition 7.12]. Finally, spherical
uniformity is equivalent to Euclidean uniformity which implies Euclidean QED.
To prove (b), we first note that since D is Loewner, it supports a (1, n)-Poincaré inequality

[HK98, Theorem 5.12]. Next, since we are assuming that N := Rn \D has n-measure zero,
[Kos99, Theorem C] says that N is removable for Sobolev functions in W 1,n. Thus N is a
so-called NED set and therefore D is in fact 1-QED.
Finally, we prove (c). Theorem 7.11 in [HK91] says in particular that under the given

hypotheses, D ⊂ R2 is QED if and only if it is a quasicircle domain and there is a constant
c > 0 such that ∆(E,F ) ≥ c > 0 for each pair E, F of distinct boundary components of D.
Since D is Loewner, it is LLC and hence a quasicircle domain by [GM85, Theorem 2.21].
The ∆(E,F ) ≥ c condition holds for any plane Loewner domain as we now demonstrate.
To this end, suppose E, F are distinct components of ∂D. (If D is simply connected, then

it is a quasidisk and hence uniform.) Let A, B be the components of R̂2 \D corresponding

to E, F respectively. Assume ∞ /∈ B and put R = R̂2 \ (A ∪ B). Thanks to [HK91,
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Theorem 6.13], the desired relative distance inequality will follow provided we can exhibit
constants M , m such that for all disjoint closed arcs α, β on F = ∂B,

cap(α, β;R2) ≥M =⇒ cap(α, β;R) ≥ m.

Note that the Loewner capacity inequality holds for disjoint continua in D̄; see for example
the proof of [HK90, Theorem 2.8] or [HK98, Remark 6.38]. Thus, if α, β are subarcs of F with
cap(α, β;R2) ≥M = 4π, then ∆(α, β) ≤ 1, so cap(α, β;R) ≥ cap(α, β;D) ≥ m = ϕ(1). �
Finally, we establish our various characterizations for uniformity.

Proof of equivalence of (a),(b),(c) in Theorem 1.1. Since we know that uniform domains have
all of the properties listed in (b), (c), it suffices to show that these two conditions imply uni-
formity. As discussed at the end of §2.G, Gromov hyperbolicity implies a k-cap condition,
so the fact that (b) implies uniformity is a consequence of Theorem 3.5 (since QEDb means
we have a linear control function ψ). Next, Loewner domains are QEDwb (by Theorem 1.3
or Theorem 3.10), so by Corollary 3.9 and Theorem 3.5 it follows that (c) implies unifor-
mity. �
Example 4.2 is a domain which is Gromov, k-cap and satisfies a Loewner inequality for

arbitrary disjoint closed balls, but is not uniform. Example 4.1 is a domain which is LLC
with respect to arcs, quasiconvex, and satisfies the k-cap condition, but is not uniform. These
illustrate that the mix of conditions in Theorem 1.1 is, in some sense, optimal.

Proof of equivalence of (a),(b),(c) in Corollary 1.2. This follows from Theorem 1.1 once we
show that D is Loewner and QEDwb. As G is uniform, it is QED; since capacity and modulus
‘ignore’ removable sets, D is also QED, and thus both Loewner and QEDwb. �
The value of Corollary 1.2 is that uniformity is typically much easier to verify than the

Gromov, k-cap, or weak slice conditions. It allows us to construct domains that fail these
other conditions by, for instance, removing a countable set from a uniform domain in such a
way that the double cone arc condition is destroyed for paths of quasiminimal length between
certain pairs of points. For more onW 1,p removability, see [Kos99] and the references therein.

4. Examples

Here we present examples to help clarify the hypotheses in our main theorems. Our
first two examples address the various conditions appearing in Theorem 1.1. The last two
examples reveal that the classes of ψ-QED domains are distinct for ‘different’ ψ.

4.1. Example. There exists a bounded planar domain D which is LLC with respect to arcs,
quasiconvex, and satisfies the k-cap condition, but is not uniform nor Loewner nor QEDwb

nor does it satisfy a weak-slice condition.

Proof. For each i ∈ N̂, put ai := 2−i, ri := ai/16, εi := r2i , and let hi : [−2ri, 2ri] → [εi, ri]
be the even function which is linear on [0, ri − εi], constant on [ri − εi, 2ri], and satisfies
hi(0) = εi, hi(ri − εi) = ri = hi(2ri). Our domain D is the union of the open unit square
(0, 1)2 and the ‘M-shaped decorations’ Di = Li ∪ Bi ∪ Ri where: Bi is the bow-tie shaped
region

Bi := {z = (x, y) : |x− ai| < 2ri, 1 + ri < y < 1 + ri + hi(x− ai)},
and Li, Ri are the left-hand and right-hand connecting squares

Li = (ai − 2ri, ai − ri)× [1, 1 + r1] , Ri = (ai + ri, ai + 2ri)× [1, 1 + ri] .
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It is easy to see that each component of ∂D is a K-quasicircle for some universal constant
K; indeed, the inner boundary components are 2ri × ri rectangles and the outer boundary
component is certainly bounded turning. Thus D is LLC; in fact, it is clear that D is LLC
with respect to arcs and also quasiconvex.
The proof that D enjoys a k-cap condition is a lengthy but straightforward case analysis

very similar to that in the proof of [Buc03, Theorem 3.6]; we leave the details to the reader.
To see that D is not Loewner, hence not uniform, we note that the relative distance of

the outer boundary component versus the ith inner boundary component is comparable to
εi/ri = ri which tends to zero. Alternatively, we can check that points in Di close to, but
on either side of, the bottleneck at x = ai cannot be joined by uniform arcs.
Finally, by Theorem 1.1, D cannot be QEDwb nor can D satisfy a weak slice condition. �
We always have

QED =⇒ ψ −QED ⇐⇒ Loewner =⇒ QEDwb =⇒ ψ −QEDwb ⇐⇒ Loewnerwb

where the last condition means that the Loewner condition is assumed only for Whitney balls.
We next exhibit examples which illustrate that the converses of the last two implications fail
to hold. It remains open as to whether or not the first implication can be reversed.

4.2. Example. Let B = B(0, 1) be the unit ball in Rn−1, n > 1. The infinite cylinder
T := B × R is a Gromov and k-cap domain which is Loewner with respect to balls with
control function ϕ(t) ≃ t1−n for large t (and so it is ψ-QEDb for some ψ). However, this
tube is not Loewner (since it is not LLC), and is not Loewner with respect to (Whitney)
balls for any control function ϕ(t) ≃ (log t)1−n for large t (and so it is not QEDwb either).

Note that the above cylinder T is quasiconformally equivalent to a half-space H; this was
shown for n = 3 in [Väi71, 16.5], and a similar mapping works in all dimensions. Since
H is uniform, it is Gromov and k-cap, and so T inherits these properties. We leave the
justification of the other properties and non-properties of T to the reader.
In [HK96, Example 4.1], it was shown that an infinite tube with certain points removed is

QEDb but not QED; since this domain is not LLC, it is also not Loewner. By appropriately
modifying that example we now show that the ψ-QEDb classes are distinct for sufficiently
different ψ. Note that by Theorem 3.3, it is behavior near 0 that accounts for the differences
among different ψ-QEDb conditions.

4.3. Example. Suppose ψ, η : [0,∞) → [0,∞) are homeomorphisms satisfying

lim inf
t→0+

e1/tψ(t) = ∞.(4.4)

and

∀ c > 0 : lim
t→0+

η(ct)

ψ(t)
= ∞.(4.5)

For c > 0, let ψc(t) = cψ(ct), and define ηc similarly. Then there exists c > 0 and a ψc-QEDb

domain D that fails to be ηc′-QEDb for every c′ > 0. In particular, there is a QEDq
b domain

that is not a QEDp
b domain for any 1 ≤ p < q.

Proof. We consider n = 2 and define D := G \ A, where G := (−1, 1) ×R, and A ⊂ R2 is

a discrete set to be specified below. Let εj := exp(−c0/ψ−1(1/j)), j ∈ N̂, where c0 > 0 is
chosen so that ε1 = 1/2. For x = (x1, x2) ∈ D, let N(x) be the least integer strictly greater
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than |x2|. We claim that we can choose A so that d(x) := dist(x, ∂D) ≤ εN(x) for all x ∈ D

and, for all j ∈ N̂, there exists xj = (xj1, j − 1) ∈ D such that 4d(xj) ≥ εN(xj) = εj.
This claim is not entirely obvious for general ψ, so let us justify it. First, let A1 := P1×Q1,

where P1 = Q1 ⊂ [−1, 1] is the coarsest partition of [−1, 1] that splits it into an even number
of subintervals, all of length l1 ≤ ε1 = 1/2; thus P1 = {0,±1/2,±1}. Inductively, for j > 1,
let A+

j := Pj × Q+
j , where Pj ⊂ [−1, 1] is the coarsest refinement of Pj−1 that splits [−1, 1]

into an even number of subintervals, all of length lj ≤ εj, and Q
+
j is the partition of [j−1, j]

into subintervals of length lj. Let A−
j := Pj × Q−

j be the reflection of A+
j in the x1-axis.

It is routine to deduce the claim for A := A1 ∪
(∪∞

j=2A
+
j ∪ A−

j

)
; notice that the peculiar

definition of N(x) is to ensure that we get a lower bound of the required type for d(xj).
We now show that D is a ψc0-QED domain. As in [HK96, Example 4.1], this follows if

we prove the defining inequality for pairs of balls E := (1/2)B̄(x), F := (1/2)B̄(y), where
|x − y| > 10, so let x = (x1, x2) and y = (y1, y2) be such a pair of points. Note that
|x2 − y2| > 9. Without loss of generality, we assume that d(x) ≤ d(y). Let L := |x− y| and
r := d(x) = min{diam(E), diam(F )}/2, so that 4 ≤ (L− 2)/2r ≤ ∆(E,F ) ≤ L/2r.
Writing s := log(1/r), we now prove the capacity estimates

cap(E,F ;R2) ≃ 1/ log(L/r) = (s+ logL)−1(4.6)

and

cap(E,F ;D) ≃ (s+ L)−1.(4.7)

Note that (4.6) follows immediately from Lemma 2.2(c). Countable sets such as A make
no difference to conformal capacity, since they are removable for W 1,p, so cap(E,F ;D) =
cap(E,F ;G). Since G is a simply connected planar domain, it is a k-cap domain. It is
readily established that kG(x, y) ≃ s+ L, thus yielding (4.7).
Comparing (4.6) and (4.7), we see that a QED inequality follows for this data if s ≥ L, so

we may assume that s ≤ L. Thus cap(E,F ;D) ≃ 1/L. Since also 1/(s + logL) ≤ 1/s, the
ψc0-QED inequality for this data follows if we show that ψ(c0/s) . 1/L. By construction,

ψ(c0/s) ≤ ψ(c0/ log ε
−1
N(x)) ≤ ψ(ψ−1(1/N(x))) < 1/|x2|.

Since d(x) ≤ d(y), it similarly follows that ψ(c0/s) < 1/|y2|. But

10 ≤ L ≤ 2max{|x|, |y|} ≤ 4max{|x2|, |y2|},

and so ψ(c0/s) < 4/L, as required.

Given c′ > 0, it remains to prove that D is not ηc′-QED. Given j ∈ N̂, j > 1, let
xj = (xj1, j − 1) and yj = (xj1,−j + 1) ∈ D be such that

1

4
exp(−c0/ψ−1(1/j)) ≤ d(xj) = d(yj) ≤ exp(−c0/ψ−1(1/j)),

and let Ej := (1/2)B̄(xj), Fj := (1/2)B̄(yj). Writing sj = log(1/d(xj)), estimate (4.6) says
that cap(Ej, Fj;R

2) ≃ 1/(sj + log(2j − 2)). Taking t = ψ−1(1/j) in (4.4), we get

∃ j0 ≥ 2 : j ≥ j0 =⇒ exp(1/ψ−1(1/j)) ≥ j,

and so sj ≃ 1/ψ−1(1/j) ≥ log j when j ≥ j0. Thus cap(Ej, Fj;R
2) ≃ ψ−1(1/j) → 0 as

j → ∞, and so (4.5) implies that limj→∞ j · η(c′ cap(Ej, Fj;R
2)) = ∞. On the other hand,
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estimate (4.7) gives cap(Ej, Fj;D) ≃ 1/(sj +2j− 2) ≤ 1/j, for all j ≥ j0. Thus the ηc′-QED
inequality fails when E = Ej, F = Fj, and j is sufficiently large. �
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(2001), 1–99.
[Buc03] S. Buckley, Slice conditions and their applications, Future Trends In Geometric Function Theory
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