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1. Introduction

Let G be a finite group with irreducible 2-Brauer characters IBr(G). The theory of real
valued characters and self-dual G-modules over a field of characteristic 2 admits some
remarkable improvements if G is restricted to being solvable.

Theorem 1. Suppose that G is solvable and ϕ ∈ IBr(G) is real valued and non-trivial.
Then there exists (U, δ) such that U ⊆ G, δ ∈ IBr(U), δG = ϕ, δ is real valued and
δ(1)2 = 2. Moreover, the Sylow 2-subgroups of U are determined by ϕ up to G-conjugacy.

We use the Isaacs nucleus of a lift of ϕ to prove the existence of our ‘extended nucleus’.
The uniqueness part on the Sylow 2-subgroups of U lies much deeper and its proof relies
on the new theory of symmetric vertices developed by the first author.

Now we turn our attention to Frobenius-Schur indicators. For a character χ of G the
indicator ν(χ) is the average value of χ(g2) for g ∈ G. If χ is irreducible then ν(χ) takes
one of the values +1,−1, 0, as χ is afforded by a real representation or is real-valued
but not afforded by a real representation or is not real-valued, respectively. We use the
extended nucleus to answer an old question of W. Willems [W91, p518].

Theorem 2. Suppose that G is solvable and ϕ ∈ IBr(G) is real valued. Then G has a
real representation whose character lifts ϕ.

Next recall that the decomposition numbers dχϕ are given by

χ(g) =
∑

ϕ∈IBr(G)

dχϕϕ(g), for all odd order g ∈ G.

Then Φϕ :=
∑

χ∈Irr(G) dχϕχ is called the principal indecomposable character of ϕ. It is

known that Φϕ vanishes on all elements of even order. In [R89] G. R. Robinson used this
to show that ν(Φϕ) ≥ 0. This result is peculiar to p = 2.

Theorem 3. Suppose that G is solvable and ϕ ∈ IBr(G) is real valued and non-trivial.
Let (U, δ) be an extended nucleus and let (W, γ) be a nucleus of ϕ. Suppose that U\W
contains an involution t. Then 〈Φϕ, 1

G
C(t)〉 > 0 and thus ν(Φϕ) > 0.
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2. Extended Nucleus

As usual Irr(G) denotes the ordinary irreducible characters of G. Also χ∗ denotes the
restriction of a character χ to the odd order elements of G.

Let k be a field of characteristic 2 and suppose that S is a non-trivial simple self-dual
kG-module. Fong’s Lemma asserts that S affords a G-invariant non-degenerate symplectic
bilinear form which is unique up to a non-zero scalar. As a consequence, every non-trivial
real valued irreducible Brauer character of G has even degree.

Suppose that ϕ ∈ IBr(G) and G is solvable. The Fong-Swan theorem asserts that there
exists χ ∈ Irr(G) such that χ∗ = ϕ. Let H ⊆ G be a Hall 2′-subgroup of G. So |H| is
odd and |G : H| is even, and every odd order subgroup of G is contained in a conjugate
of H. For the given ϕ and χ, we say that ψ ∈ Irr(H) is a Fong character of χ if ψ(1) is
minimal such that 〈χH , ψ〉 6= 0. In that case it is known that 〈χH , ψ〉 = 1, ψ(1) = χ(1)2′
and ψG is the principal indecomposable character of G corresponding to ϕ.

Lemma 4. Suppose that G is solvable and ϕ ∈ IBr(G) is non-trivial and real valued.
Then there is U ⊆ G and a real valued δ ∈ IBr(U) such that δG = ϕ and δ(1)2 = 2.

Proof. In [I84] I. M. Isaacs constructed for each χ ∈ Irr(G) a nucleus (W, γ); here W ⊆ G
and γ ∈ Irr(W ) is the product of a 2-special character and a 2′-special character and
satisfies γG = χ. His construction uniquely determines (W, γ) up to G-conjugacy. By
definition B2′(G) is the set of all χ for which γ is 2′-special. Isaacs showed that B2′(G)
gives a canonical set of lifts for the irreducible Brauer characters of G.

Let χ ∈ B2′(G) with χ∗ = ϕ and let (W, γ) be a nucleus of χ. Then χ̄ belongs to B2′(G)
as χ̄ has nucleus (W, γ̄) and γ̄ is 2′-special. Moreover χ̄∗ = ϕ̄ = ϕ = χ∗. So χ̄ = χ. On
the other hand, γ is non-trivial as ϕ is non-trivial, and γ(1) is odd as γ is 2′-special. So
γ̄ 6= γ, using Fong’s Lemma.

Now (W, γ̄) is G-conjugate to (W, γ) as both are nuclei of χ, and NG(W, γ) = W as
γNG(W ) is irreducible. So the set stabilizer U of {γ, γ̄} in NG(W ) satisfies |U : W | = 2. It
is clear that η = γU is a real valued irreducible character of U with η(1)2 = 2. Now set
δ = η∗, and notice that (U, δ) satisfies what is required. �

Our next result proves a precise form of Theorem 2, thus answering Willems question:

Theorem 5. Suppose that G is solvable and ϕ ∈ IBr(G) is real valued. Let χ ∈ B2′(G)
be the Isaacs canonical lift of ϕ. Then ν(χ) = +1.

Proof. We may assume that ϕ is non-trivial. Let (W, γ) and (U, η) be as in the previous
lemma. So |U : W | = 2, γ is 2′-special, γU = η and ηW = γ + γ̄. Now U = W 〈u〉 where
u ∈ U\W and u2 ∈ W . We can and do assume that u is a 2-element. Set C = 〈u〉 and
D = 〈u2〉, so that U = WC and C ∩W = D.

We claim that 〈γD, 1D〉 is odd. To show this, we may assume that D 6= 1. Let ζ
generate the cyclic group Irr(D) and set q = |D|. Then the rational characters in Irr(D)
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are ζ0 = 1D and ζq/2. Now γ is 2-rational as it is 2′-special. So γD is rational and hence

γD = m0ζ
0 +mq/2ζ

q/2 +

q/2−1∑
i=1

mi(ζ
i + ζ̄ i) , for non-negative integers mi.

Then clearly det γ(u2) = (−1)mq/2 . But o(γ) is odd, as γ is 2′-special. So mq/2 is even.
Then 〈γD, 1D〉 = m0 ≡ γ(1) (mod 2). The claim follows, as γ(1) is odd.

The previous paragraph implies that 〈η, 1UC〉 is odd, as

〈ηC , 1C〉 = 〈(γU)C , 1C〉 = 〈γD, 1D〉.
As 1UC is afforded by an R-representation of U , this implies that η is afforded by an
R-representation of U . So finally χ = ηG is afforded by an R-representation of G. �

Note that it can easily happen that a real irreducible Brauer character of a solvable
group has a lift to an ordinary character with Frobenius-Schur indicator −1. For example,
let G be the non-abelian group C3 o C4 and let ϕ ∈ IBr(G) with ϕ(1) = 2. Then
Φϕ = χ1 + χ2, where χ1, χ2 ∈ Irr(G) are real valued and χ∗1 = χ∗2 = ϕ. Now ν(Φϕ) = 0
(see [M06, Theorem 2]). So we can choose notation so that ν(χ1) = +1 and ν(χ2) = −1.

3. Symmetric Vertices and Extended Nucleus

For the moment k is a field of arbitrary characteristic p. Let H ⊆ G. Following [H54]
a kG-module M is H-projective if it is a direct summand of an induced module IndGH(L),
for some kH-module L. Suppose that M is indecomposable. Following [G59] a vertex of
M is a minimal V ⊆ G such that M is V -projective. The vertices of M are p-subgroups of
G which are determined up to G-conjugacy. Now a V -source of M is an indecomposable
kV -module Z such that M is a direct summand of IndGH(Z). Then Z is a direct summand
of ResGV (M), and Z is uniquely determined by M and V up to NG(V )-conjugacy.

Recall that the dual of a left kG-module M is the left kG-module M∗ = HomkG(M,k).
Here if f : M → k and g ∈ G, we set (gf)(m) := f(g−1m), for all m ∈ M . Now
M ∼= M∗ as kG-modules if and only if there exists a G-invariant non-degenerate bilinear
form b : M ×M → k. We say that b is symmetric if b(m1,m2) = b(m2,m1), alternating
if b(m1,m2) = −b(m2,m1) and symplectic if b(m1,m1) = 0, for all m1,m2 ∈ M . If p 6= 2
alternating is the same as symplectic and no symplectic form is symmetric. If p = 2
alternating is the same as symmetric and all symplectic forms are symmetric but not all
symmetric forms are symplectic.

Let (L, c) be a symmetric kH-module. Now IndGH(L) =
∑

gH g ⊗ L as k-vector spaces,
where g ⊗ L is a kgH-module. The obvious isomorphism H ∼= gH maps L to g ⊗ L. So
g ⊗ L inherits a gH-invariant non-degenerate form gc from c. The induced symmetric
kG-module IndGH(L, c) is the orthogonal direct sum of the symmetric k-spaces (g⊗L, gc).

Following [M15] a symmetric kG-module (M, b) is H-projective if (M, b) is an orthog-
onal direct summand of IndGH(L, c), for some symmetric kH-module (L, c). Moreover a
symmetric vertex of M is a minimal T ⊆ G such that there exists a T -projective sym-
metric kG-module (M, b). Analogous concepts exist for alternating kG-modules.
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For the remainder of this section k is a perfect field of characteristic 2 which is a splitting
field for all subgroups of G. We simplify our exposition by referring to both symplectic
and non-symplectic symmetric forms as symmetric forms. In practice symplectic forms
are more important than non-symplectic symmetric forms, because the isometry group of
a symmetric form is closely related to a symplectic group.

Example 6. There is a unique non-trivial simple kD12-module, where D12 is the dihedral
group of order 12. Its projective cover P affords a 2-dimensional space of D12-invariant
symmetric bilinear forms. It can be shown that each non-central C2-subgroup of D12 is
a symmetric vertex of P . As there are two D12-conjugacy classes of such subgroups, this
shows that symmetric vertices are not unique determined up to G-conjugacy.

However, the first author proved the following result in [M15]:

Proposition 7. The symmetric vertices of a self-dual simple kG-module S are uniquely
determined up to G-conjugacy. Let b be a symmetric form and let (V, Z) be a vertex-source
pair of S. Then S has a symmetric vertex T ⊇ V and exactly one of (i) or (ii) holds:

(i) T = V and b is non-degenerate on a submodule of ResGV (S) isomorphic to Z.
Moreover IndGV (Z) ∼= S ⊕Q, where Q has no summands isomorphic to S.

(ii) |T : V | = 2 and IndTV (Z) affords a non-degenerate T -invariant symmetric form c.
For any such form c, (S, b) is an orthogonal direct summand of IndGT (IndTV (Z), c).

We shall see in Lemma 9 that only (ii) occurs when G is solvable and S is non-trivial.
L. Puig has shown that if G is solvable then the source Z of a simple module S is

an endo-permutation module constructed from tensor products of endo-trivial modules
of quotients of a vertex (c.f. [Mz06, Abstract]). As a consequence of the classification of
torsion endo-trivial modules for p-groups and [CT00], the sources are self-dual unless a
vertex has a generalized quaternion quotient. We present an example of a solvable group
with a simple self-dual module which has a non self-dual source, as this seems to be a
relatively uncommon phenomenon:

Example 8. Let E be an extra-special group of order 27 and exponent 3. Then Aut(E) ∼=
GL(2, 3) has a Sylow 2-subgroup T which is semi-dihedral of order 16. Set G = EoT .
The centralizer of Z(E) in T is a quaternion group V of order 8. Let k be a field extension
of F4. Then kE has a faithful 3-dimensional module, which extends to a simple kEoV -
module M . Now MT =M∗ 6∼= M . So S = IndGEoV (M) is a self-dual simple kG-module

with vertex V . Moreover S has V -source Z := ResEoV
V (M). As Z is a 3-dimensional

endo-trivial kV -module, Z is not self-dual [CT00, p322]. So S has symmetric vertex T .

Theorem 1 is a consequence of our next lemma and the uniqueness of symmetric vertices
proved in Proposition 7.

Lemma 9. Suppose that G is solvable and ϕ ∈ IBr(G) is non-trivial and real valued. Let
U ⊆ G and δ ∈ IBr(U) be such that δ is real valued, δG = ϕ and δ(1)2 = 2. Let S be the
simple kG-module whose Brauer character is ϕ. Then each Sylow 2-subgroup T of U is
a symmetric vertex of S.
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Proof. Let (W, γ) be the Isaacs nucleus of the lift of δ in B2′(U), let SU be the simple
kU -module with Brauer character δ and let SW be the simple kW -module with Brauer
character γ∗. Recall that SW 6∼= S∗W as γ(1) is odd. Let (V, Z) be a vertex source pair of
SW . Then it is clear that (V, Z) is a vertex source pair of S and SU .

We claim that V is not a symmetric vertex of S. For otherwise Z ∼= Z∗ by the first
statement in Proposition 7(i). So Z is a V -source of S∗W . In particular SW and S∗W
are non-isomorphic components of IndWV (Z). Now IndGW (SW ) ∼= S ∼= S∗ ∼= IndGW (S∗W ). So
S occurs at least twice as a direct summand of IndGV (Z). This contradicts the second
statement in Proposition 7(i), which proves our claim.

We can apply the previous paragraph to SU . So V is not a symmetric vertex of SU .
Then by Proposition 7(ii), SU has a symmetric vertex T ⊇ V with |T : V | = 2. Now
V is a Sylow 2-subgroup of W , as dim(SW ) is odd. But |U : W | = 2. So T is a Sylow
2-subgroup of U . Now let bU be a symmetric form on SU . Then (S, b) ∼= IndGU (SU , bU) as b
is unique up to isometry. Moreover bU is T -projective. So it follows from the transitivity
of induction of forms that b is T -projective. Since |T : V | = 2, we deduce that T is a
symmetric vertex of S. �

4. Projective Indecomposable Modules and Orthogonal Forms

Temporarily let k be a field of arbitrary characteristic p. The study of bilinear and
quadratic forms on projective kG-modules has attracted some interest. There are ring-
theoretic criteria for a projective indecomposable kG-module to be of quadratic type
(have a non-degenerate G-invariant quadratic form). These are due to Landrock and
Manz [LM92] for p 6= 2, and to Gow and Willems [GW93] for p = 2.

Recall that the Jacobson radical J(kG) of kG is the annihilator of all simple kG-modules
and the contragredient map o is the k-algebra involutary anti-automorphism of kG such
that go = g−1, for all g ∈ G.

Proposition 10 (Landrock-Manz). Suppose that p 6= 2 and P is a projective indecompos-
able kG-module. Then P is of quadratic type if and only if there is a primitive idempotent
e in kG such that P ∼= kGe and eo = e.

From now on k is a perfect field of characteristic p = 2. From [GW93], if P is the
projective cover of a non-trivial simple kG-module then each G-invariant symmetric form
on P is the polarization of a G-invariant quadratic form on P . In particular each such
form is symplectic. Now a primitive idempotent e ∈ kG satisfies eo = e if and only if kGe
is the projective cover of the trivial kG-module. So Proposition 10 is wrong for p = 2,
and is replaced by:

Proposition 11 (Gow-Willems). Suppose that e is a primitive idempotent in kG. Then
kGe is of quadratic type if and only if there is an involution t ∈ G such that eoet 6∈ J(kG).

If eoet 6∈ J(kG) there is a unique idempotent f ∈ kG such that kGe = kGf and f o = f t.

Parts of this result are only implicit in [GW93, Section 3].
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G. R. Robinson showed in [R89] that if Φ is a principal indecomposable character of G
then ν(Φ) =

∑
t〈Φ, 1GCG(t)〉 where t ranges over 1 and the conjugacy classes of involutions

in G. The first author showed in [M06, Corollaries 5.2 and 6.5]:

Lemma 12. Suppose that e is a primitive idempotent in kG and t ∈ G is an involution
such that eoet 6∈ J(kG). Let Φ be the principal indecomposable character of kGe. Then
〈Φ, 1GCG(t)〉 > 0. In particular ν(Φ) > 0, if kGe has a quadratic geometry.

For G solvable, we aim to directly relate the Gow-Willems criterion to the extended
nucleus and symmetric vertex of the corresponding simple modules. We begin with a very
general remark, which holds for an arbitrary field k:

Lemma 13. Suppose that N is a normal subgroup of G. Then J(kN) = J(kG) ∩ kN .

Proof. Let S be a simple kG-module. Then ResGN(S) is semi-simple, by Clifford’s the-
orem. So J(kN) ⊆ J(kG) ∩ kN . Conversely, let SN be a simple kN -module. Then
ResGN IndGN(SN) =

∑
gN⊆G S

g
N by Mackey’s formula. This implies that SN is a direct

summand of ResGN(S), for some simple kG-module S. So J(kN) ⊇ J(kG) ∩ kN . �

We also need a result from [GW95]:

Lemma 14. Suppose that (M, b) is a symmetric kG-module and M = M1+̇ . . . +̇Mt is a
decomposition of M as an internal direct sum of indecomposable kG-modules Mi. Then
for each i, either b is non-degenerate on Mi or there exists j 6= i such that Mj

∼= M∗
i and

b is non-degenerate on Mi+̇Mj.

Let PG(M) = P (M) denote the projective cover of a kG-module M . Theorem 3 is a
consequence of Lemmas 9 and 12 and our next result:

Theorem 15. Suppose G is solvable and S is a self-dual simple kG-module with a vertex
and symmetric vertex V ⊆ T . Then P (S) is of quadratic type if and only if T : V splits.

Proof. If S is trivial, then T = V and it is easy to see that P (S) has a quadratic geometry.
So from now on S is non-trivial. Let ϕ be the Brauer character of S and let χ ∈ B2′(G)
with χ∗ = ϕ. Also let (W, γ) and (U, δ) be as in Lemma 4. So δ(1)2 = 2 and δG = ϕ.

Let SU be the self-dual simple kU module whose Brauer character is δ. As IndGU (SU) =
S, Frobenius-Nakayama reciprocity implies that ResGU (P (S)) = P (SU) ⊕ Q, where no
component of Q is isomorphic to P (SU)∗ ∼= P (SU).

Suppose first that P (S) is of quadratic type. Then P (SU) is of quadratic type, by
the previous paragraph and Lemma 14. Now ResUW (SU) = SW ⊕ S∗W , where SW is the
simple kW -module whose Brauer character is γ∗. Let e be a primitive idempotent in kW
such that kWe ∼= P (SW ). Then e is still primitive in kU and indeed kUe ∼= P (SU). So
according to Proposition 11, there is an involution t ∈ U such that eoet 6∈ J(kU).

We claim that t 6∈ W . For suppose otherwise. Then eoet ∈ kW . But Lemma 13 implies
that eoet 6∈ J(kW ). So P (SW ) ∼= kWe is of quadratic type and in particular SW ∼= S∗W .
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This contradiction proves the claim. We have shown that U splits over W . So T splits
over V , by Lemma 9.

Suppose now that T splits over V . Let t be any involution in T\V and let H be a Hall
2′-subgroup of G such that H ∩W is a Hall 2′-subgroup of W . As χ = γG we have

χ(1)2′ = [G : W ]2′γ(1) = |H : H ∩W |γ(1) = (γH∩W )H(1).

Moreover 〈χ, (γH∩W )G〉 ≥ 〈γ, (γH∩W )H〉 ≥ 1. So γH∩W is a Fong character for γ and
(γH∩W )H is a Fong character for χ. Then Φδ = (γH∩W )U and Φϕ = (γH∩W )G are the
principal indecomposable characters of SU and S, respectively. In particular ΦG

δ = Φϕ. It
follows from this that IndGU (P (SU)) = P (S). So to complete the proof we need only show
that P (SU) is of quadratic type.

We can and do assume that U = G, SU = S and thus |G : W | = 2. Set N = O2′(G).
Suppose first that N acts trivially on S. Set L = O2′,2(G) and G = G/L. Then S can

be identified (by deflation) with an irreducible kG-module. As kG-module it has vertex V
and symmetric vertex T . Now t is an involution in T\V and |G/L| < |G|. So by induction

on |G| there is a primitive idempotent e ∈ kG such that kGe ∼= PG(S) and et = eo.
The map xσ := txot, for x ∈ kG, is an involutary k-algebra anti-automorphism of kG.

The kernel of the projection map kG → kG is sp{g(1 − `) | g ∈ G, ` ∈ L}. It is easy to
check that this is σ-invariant. So σ induces the involutary k-algebra anti-automorphism
xσ = txot on kG.

Notice that eσ = e. By idempotent lifting [M15, Lemma 2.1] there is a primitive
idempotent e ∈ kG such that eσ = eo and e is the image of e in kG. Then Proposition 11
implies that kGe ∼= P (S) is of quadratic type. This completes the case N ⊆ ker(S).

Let θ ∈ Irr(N |γ). By the work above we may assume that θ is non-trivial. In particular
θ 6= θ. Set m := 〈χN , θ〉 = 〈γN , θ〉. Then m is odd, as it divides γ(1). Let Z be the simple
kN -module whose Brauer character is θ. Then Z occurs m times as a direct summand of
the semisimple kN -module ResGN(S). So by Frobenius-Nakayama reciprocity, P (S) occurs
m times as a direct summand of the projective kG-module IndGN(Z).

Now m = |W : NW (θ)| is odd. So NW (θ) contains a Sylow 2-subgroup of W . Moreover θ
is G-conjugate to θ as both belong to Irr(N |χ). So |NG(θ, θ) : NG(θ)| = 2. As |G : W | = 2,
it follows that NG(θ, θ) contains a Sylow 2-subgroup of G. So we can and do assume that
T is a Sylow 2-subgroup of NG(θ, θ) and V = T ∩ NG(θ). In particular θt = θ.

Consider the group E := N〈t〉, which is a degree 2-extension of N . Then IndEN(Z) is
a simple kE-module which is self-dual as its Brauer character is θE. So it affords a non-
degenerate E-invariant symplectic bilinear form which is 〈t〉-projective. As P (S) occurs
with odd multiplicity m in IndGN(Z) = IndGE(IndEN(Z)), we deduce that P (S) affords a
non-degenerate G-invariant symplectic bilinear form which is 〈t〉-projective. In particular
P (S) is of quadratic type and there is a primitive idempotent e ∈ kG such that et = eo

and P (S) ∼= kGe. This completes the proof of the theorem. �
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