LEAVING CERTIFICATE EXAMINATION, 1974

PHYSICS—ORDINARY LEVEL

WEDNESDAY, 26 JUNE-MORNING, 9.30 to 12.15

Any six questions to be answered.

All the questions carry the same marks.

- 1. Answer eleven of the following sixteen items (a), (b), (c), . . . etc. All the items carry the same marks. Keep your answers short.
 - (a) Define velocity.
 - (b) What is the weight in newtons of a 2 kg mass on the earth's surface $(g = 9.8 \text{ m s}^{-2})$?
 - (c) Write an expression for the force of attraction between the earth of mass M kg and a satellite of mass m kg when the distance between their centres is d metres.
 - (d) For a definition of temperature complete the equation $\frac{t}{100} = \frac{X_t X_{100} X_{100}}{X_{100} X_{100} X_{100}}$ where X is some property which varies as heat is added.
 - (e) Which of the following is Avogadro's number:

 6.67×10^{-11} , 6.023×10^{23} , 3.0×10^{8} ?

(f) What magnification is obtained when an object is placed 10 cm in front of a concave mirror and the image is formed 30 cm from the mirror?

(g) What is meant by diffraction?

- (h) Which of the following has the shortest wavelength: ultra-violet rays, X-rays, radio waves, infra-red rays?
- (i) What property of light indicates that light consists of transverse waves?
- (j) Fig. I represents three lights projected on a screen. What colour will the shaded area be?

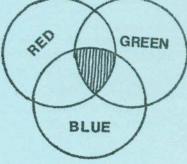


Fig. I

- (k) Name the unit of electrical resistance.
- (l) How may a moving-coil galvanometer be converted into a voltmeter?
- (m) What electrical unit is defined in terms of the force between two long thin cylindrical parallel current-carrying conductors?

(n) What are neutrons?

- (o) What is meant by the half-life of a radioactive substance?
- (p) Name a famous scientist in the field of atomic physics.
- 2. What is (a) kinetic energy, (b) momentum? Write down the law of conservation of momentum. A mass of 3 kg moving with a velocity of 10 m s⁻¹ collides with a mass of 2 kg which is at rest. After collision both masses move on together as a combined mass. Calculate (i) the velocity of the combined mass, (ii) the change in kinetic energy due to the collision.
- 3. State Boyle's law.
 In a Boyle's law apparatus as shown in Fig. II the volume of a gas in the tube A is 10 cm³ when the level of the mercury in the tube B is 4 cm above the level of the mercury in A. The pressure of the atmosphere is 760 mm of mercury. Find the height of the mercury in B above the mercury in A when the volume of the gas is 8 cm³.

Show how the kinetic theory equation

$$p = \frac{1}{3} \frac{nmc^2}{v}$$
 is related to Boyle's law.

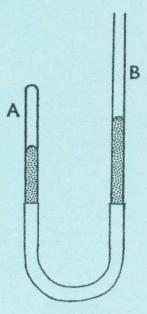


Fig. II

- 4. Draw a ray diagram to show how a real image of an object is formed by a convex lens.

 Show, with the aid of ray diagrams, how (i) two convex lenses may be combined to magnify a distant object,

 (ii) two convex lenses may be combined with a prism to produce a pure spectrum.
- 5. Explain the basic physical principles involved in each of the following.
 - (a) The real depth of a swimming pool filled with water is greater than its apparent depth.
 - (b) Sunlight which is passed through ordinary glass will not produce sun tan.
 - (c) A crackling sound is sometimes heard when dry hair is combed.
 - (d) When a television set is switched on there is generally a slight delay before a picture appears.
- 6. Describe how you would carry out any two of the following experiments in the laboratory:
 - (a) to measure the velocity of sound in air,
 - (b) to measure the horizontal component of the earth's magnetic field strength,
 - (c) to demonstrate Ohm's law for a given metallic conductor,
 - (d) to measure the temperature of a substance which is of the order of 500° C using an electrical thermometer.
- 7. State the laws of electromagnetic induction. Describe a simple laboratory experiment to demonstrate one of them.

Describe, with the aid of a diagram, a simple a.c. generator and explain how it operates. In what way may an a.c. generator be modified to produce direct current?

- 8. Describe, with the aid of a diagram, a moving-coil ammeter and explain how it operates. Give an account of an experiment by which the accuracy of an ammeter may be checked.
- 9. What are electrons? Give an account of the liberation of electrons by photoelectric emission. What part is played by electrons (i) in the production of X-rays, (ii) in the formation of line spectra?
- 10. Answer any two of the following.
 - (a) Describe a primary cell e.g. Daniell or Leclanché cell and indicate how polarisation is minimised in the cell you select.
 - (b) Find the total capacitance of the arrangement shown in Fig. III.

Fig. III

- (c) How may it be shown in the laboratory that sound can be (i) reflected, (ii) refracted?
- (d) Give a brief account of nuclear fission. How may the energy released be used to generate electricity?