AN ROINN OIDEACHAIS

LEAVING CERTIFICATE EXAMINATION, 1994

MATHEMATICS — ORDINARY LEVEL

SAMPLE PAPER I (300 marks) - 21/2 hours

Attempt SIX QUESTIONS (50 marks each)

Marks may be lost if all your work is not clearly shown or if you do not indicate where a calculator has been used.

- 1. (a) IR£19.50 pocket money is divided between two pupils in the ratio 8:5. How much does each get?
 - (b) Calculate the percentage error in taking 50 + 60 as an approximation for 52.47 + 64.87.
 - (c) A person has a tax-free allowance of IR£2400 per annum. The annual take home pay is IR£9268.Calculate the annual gross pay if tax is paid at 32%.

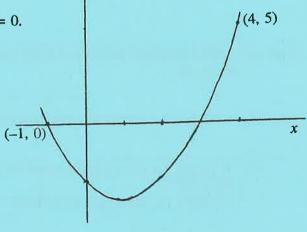
2. (a) Solve

$$3x - 2y = -10$$
$$2x + 3y = 2$$

(b) Find the solution set E of 5x - 6 < 4.

Find the solution set H of $-4x \le 3$.

Find $E \cap H$.


(c) Write $\frac{125}{\sqrt{5}}$ as a power of 5, and solve for x the equation

$$5^{2x+1} = \left(\frac{125}{\sqrt{5}}\right)^3 .$$

$$p + \frac{t}{q} = 1, \quad q \neq 0.$$

- (b) Show that x = 4 is a root of $x^3 2x^2 11x + 12 = 0$, and find the other two roots.
- (c) The graph of the quadratic function $x \to f(x)$, $x \in \mathbb{R}$, is as shown. Express f(x) in the form $x^2 + bx + c$.

g(x) = px + q, where g(0) = -3 and g(1) = 0. Find the value of p and the value of q. Find the values of x for which g(x) = f(x).

f(x),

4. (a) Let $z_1 = 2 + 3i$ and $z_2 = 4 + i$, where $i^2 = -1$.

Plot

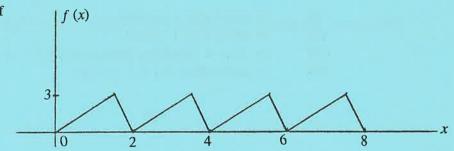
- (i) z
- (ii) z_2
- (iii) z_2-z_1

on the Argand diagram.

- (b) Express $\frac{1}{2 + 3i}$ in the form p + qi, $p, q \in \mathbb{R}$.
- (c) (i) Solve for real x and real y 2x + (x + y) i = 4 5i.
 - (ii) Let z = 3 2i. Solve for real s and real t

$$\frac{s + it}{1 + 2i} = \overline{z} ,$$

where \overline{z} denotes the complex conjugate of z.


- 5. (a) The first term, T_1 , of an arithmetic sequence is 9 and the common difference is 4. Find T_5 , the fifth term and T_n , the n.th. term.
 - (b) In an arithmetic sequence, S_n, the sum to n. terms, is

$$S_{\rm u}=5n-2n^2.$$

Find T₁ and the common difference.

(c) What sum of money would amount to IR£8843·18 in 4 years at 8% per annum compound interest?

6. (a) The graph shows portion of a periodic function $f: x \to f(x)$. Write down the range and period of the function.

(b) The formula for relating degrees fahrenheit, F, to degrees celcius, C, is

$$C = \frac{5}{9} (F - 32).$$

Draw the straight line graph of this relation, plotting F on the horizontal axis for

$$5 \leq F \leq 75$$
.

- (i) Use your graph to estimate the fahrenheit temperature equivalent to a celcius temperature of 15 degrees.
- (ii) Indicate on the F axis the interval $25 \le F \le 55$ and from the graph estimate the corresponding range for C.
- (c) Find, using calculus, the co-ordinates of the local maximum of the curve

$$y = 12x - x^3.$$

7. (a) Differentiate

(i)
$$x^3$$

(ii) $3r^4 - 2r + 1$

with respect to x.

(b) Differentiate

(i)
$$(x^3 + 3) (5x^2 - 1)$$

(ii) $(1 - \frac{1}{x})^{10}$

(ii)
$$(1-\frac{1}{x})^{10}$$

with respect to x.

(c) A body moves along a straight line and its distance s metres from a fixed point on the line after a time t seconds is given by

$$s = 3t^3 - 4t + 6.$$

Find

- (i) its speed after t seconds
- (ii) its speed after 1 second
- (iii) the time at which the body is at rest
- its acceleration at t = 3 seconds. (iv)

8. (a) The function f is defined by $f: \mathbb{R} \to \mathbb{R}$: $x \to 7 - 3x$.

Find f(-2), and find a number k such that

$$k f(-2) = f(24).$$

(b) Let
$$g(x) = x(x-2)$$
 for $x \in \mathbb{R}$.

Find g(0), g(4), g(-2).

Show that g(1 + t) = g(1 - t) for $t \in \mathbb{R}$.

Find the derivative, $g^{1}(x)$, and show that $g^{1}(x) > 0$ for x > 1.

(c) Using the information obtained in (b), draw the graph of

$$g(x) = x(x-2)$$

for
$$-2 \le x \le 4$$
, $x \in \mathbb{R}$.

Using the same scales and the same axes, draw the graph of $g^{1}(x)$.

Write down the values of x at which the two graphs intersect.