LEAVING CERTIFICATE EXAMINATION, 1994

## MATHEMATICS — HIGHER LEVEL

SAMPLE PAPER I (300 marks) - 21/2 hours

Attempt SIX QUESTIONS (50 marks each)

Marks may be lost if all your work is not clearly shown or if you do not indicate where a calculator has been used.

1. (a) Show that

$$\frac{x+3}{x-1} + \frac{4}{1-x}$$

simplifies to a constant for  $x \neq 1$ .

(b) Solve the simultaneous equations

$$2x + 3y - z = -7$$

$$5x - 2y - 4z = 3$$

$$3x + y + 2z = -7$$

(c) Prove that if f(x) is a cubic polynomial and k is a number such that f(k) = 0, then x - k is a factor of f(x).

Let g(x) be a cubic polynomial such that

$$g(-1) = 0$$
,  $g(1) = 0$  and  $g(2) = 5g(0)$ .

Find the third root of the equation g(x) = 0.

2. (a) Find the two solutions for the linear and quadratic equations

$$y = x - 1$$
$$x^2 + y^2 = 13$$

(b) If  $a \ne 0$  and one of the roots of the equation  $ax^2 + bx + c = 0$  is three times the other, show that

$$3b^2 = 16ac.$$

(c) If for all integers n,

$$U_n = 600(2)^n - 7(5)^n$$

verify that

$$U_{n+2} - 7U_{n+1} + 10U_n = 0.$$

Find the least integer n > 0 for which  $U_n < 0$ .

3z (a) Let  $z = -1 + i\sqrt{3}$ , where  $i^2 = -1$ . Express  $z^2$  in the form x + iy,  $x, y \in \mathbb{R}$  and find the real value for k such that

$$z^2 + kz$$

is real.

(b) If the matrix  $M = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$ , find  $M^2$ .

Given that  $M^{-1}\begin{bmatrix} p & q \\ r & s \end{bmatrix} = M\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$ , find the values of p, q, r and s.

(c) If  $N = \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix} \text{ and } P = \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix},$ 

calculate P-1NP and hence find N20.

4. (a) Find the sum of the first 12 terms of the geometric sequence

$$2$$
,  $2 \times 3$ ,  $2 \times 3^2$ ,  $2 \times 3^3$ , ...

- (b) In an arithmetic sequence, three consecutive terms have a sum of -9 and a product of 48.
  Find the possible values for these terms.
- (c) Show that the nth term of the sequence

can be written as the sum to n terms of a geometric series and has the value  $\frac{5}{9}$  (10<sup>n</sup> - 1). Hence find the sum of the first n terms of the sequence.

- 5. (a) Expand  $(2 + \sqrt{3})^5$  by the Binomial Theorem, and write your answer in the form  $a + b\sqrt{3}$ ,  $a, b \in \mathbb{R}$ .
  - (b) Show that for  $n \ge 1$ ,

$$\sum_{r=1}^{n} \frac{1}{(r+1)(r+2)} = \frac{1}{2} - \frac{1}{n+2}.$$

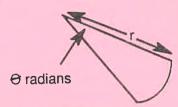
Hence find the sum of the infinite series

$$\sum_{r=1}^{\infty} \frac{1}{(r+1)(r+2)}.$$

(c) Show by induction that 8 is a factor of  $7^{2n+1} + 1$  for  $n \in \mathbb{N}$ .

- 6. (a) Find the derivative of the functions (i)  $(2x + 1)^3$  and (ii)  $\frac{x}{x^2 + 1}$ .
  - (b) Let  $x = 4 \cos \Theta + 3 \sin \Theta \text{ and } y = 3 \cos \Theta 4 \sin \Theta, \text{ where } -\pi < \Theta < \pi.$  Evaluate  $\frac{dy}{dx}$  when  $\Theta = \frac{\pi}{2}$ .
  - (c) Let  $f(x) = e^{2x} ae^{x}$ ,  $x \in \mathbb{R}$  and a constant, a > 0. Show that f(x) has a local minimum at a point (b, f(b)), specifying the value of b in terms of a.

7. (a) The sector of the circle shown, of radius length r, has total perimeter length 20. Express this information in an equation involving r and  $\Theta$ .



Express  $\Theta$  in terms of r and hence obtain an expression for the area of the sector in terms of r.

- (b) (i) Differentiate from first principles  $\sqrt{x}$  with respect to x.
  - (ii) Find the derivative of  $\frac{x}{1+\sqrt{x}}$
- (c) Let  $f(x) = 2 \tan^{-1} x \tan^{-1} \frac{2x}{(1-x^2)}$ , for  $x \neq -1$ ,  $x \in \mathbb{R}$ .

Find  $f^{1}(x)$ , the derivative of f(x).

Show that  $2 \tan^{-1} x = \tan^{-1} \frac{2x}{(1 - x^2)}$ , for -1 < x < 1.

- 8. (a) Find  $\int 2x^3 dx$  and  $\int \frac{x^3 2}{x^2} dx$ 
  - (b) Evaluate any two of the following

(i) 
$$\int_0^1 x\sqrt{1-x^2} \, dx$$

(ii) 
$$\pi/3 \int_{-\pi/3}^{2\pi/3} \sin 4x \cos 2x \ dx$$

(c) Using De Moivre's Theorem, prove that

$$\cos 3 \Theta = 4 \cos^3 \Theta - 3 \cos \Theta.$$

Hence find

$$\int \cos^3\Theta \ d \ \Theta.$$