LEAVING CERTIFICATE EXAMINATION, 1978

MATHEMATICS - HIGHER LEVEL - PAPER II (300 marks)

SAMPLE PAPER

Attempt QUESTION 1 (100 marks) and FOUR other questions (50 marks each).

- 1. (i) If $z_1 = 6 + 4i$ and $z_2 = 2 + 3i$, where $i = \sqrt{-1}$, calculate $z_1 \cdot z_2$ and $\overline{z}_1 \cdot \overline{z}_2$.
 - (ii) Find from first principles the differential coefficient of $\cos x$ with respect to x.
 - (iii) If $x = 2t t^2$ and $y = t^3$, where $t \in \mathbb{R}$, find the value of $\frac{dy}{dx}$ when t = 2.
 - (iv) Evaluate $\sum_{r=1}^{n} (1 + r + 2^{r}).$
 - (v) The line segment y = x 1, $1 \le x \le 4$, is rotated about the line x = 0. Find in terms of π the volume generated.
 - (vi) Prove by induction, or otherwise, that $1 + x + x^2 + \dots + x^n = \frac{1 x^n + 1}{1 x}$
 - (vii) Assuming that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, show that $\sum_{n=1}^{\infty} \frac{n \times n}{n^3 + 1}$ converges for $0 \le x \le 1$.
 - (viii) T_n is the *n*th term and S_n is the sum of the first *n* terms of a series. If $S_n = nT_n 7$ for n > 1 and $T_1 = 5$, show that $T_n = T_{n-1}$ and find S_{13} .
 - (ix) $x = y_1$ (1·15) = y_2 (1·15)² and $y_1 + y_2 = 500$. Calculate x to the nearest integer.
 - (x) If $\vec{a} = 3\vec{i} 2\vec{j}$, $\vec{b} = \vec{i} + 4\vec{j}$, $\vec{c} = 2\vec{i} + 7$, verify that $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$.

OR

- (x) Use the tables on page 36 to find the area under the normal curve which corresponds to $-1.6 \le z \le 1.6$.
- 2. (a) If $x, y \in \mathbb{R}$ and $i = \sqrt{-1}$, express $\sqrt{3 + \frac{4}{i}}$ in the form x + iy.
 - (b) Show that $z_1 = \overline{z}_2 \overline{z}_1 = 2i$ Im $(z_1 = \overline{z}_2)$, where Im (z) means the imaginary part of z.
 - (c) Illustrate on an Argand diagram the set of solutions of |z-1-i|=2.
- 3. Let A = {x | |x| ≥ 2} and let f be the function A → R: x → x√x² 4. Show that f has no local maximum or minimum but that it has two points of inflexion. Show also that the tangent to the graph of f at the point (2, 0) is parallel to the y axis and prove that f(x) increases with x for all x ∈ A.
 Draw the graph of y² = x² (x² 4).
 - 4. (a) Differentiate with respect to x:
 - (i) $\sin 2x \cos^2 x$

(ii)
$$e^{\frac{1}{1-x}}$$
, $x \neq 1$

(iii) log (tan 3x), $0 < x < \frac{\pi}{6}$ (iv) 2^x

(b) If $y = (a + bx) e^{-2x}$, where a, b are independent of x, prove that

(i)
$$\int_{2}^{3} \log k \, dx$$
 (ii)
$$\int_{0}^{\frac{\pi}{2}} \sin 3x \, \cos x \, dx$$

(iii)
$$\int_0^2 \frac{dt}{5 + t(t+4)}$$
 (iv) $\int_1^2 \frac{x}{x+1} dx$

6. (a) Let
$$T_n = \frac{(2n-1)(3n+1)}{1+n+n^2}$$
 and let $\lim_{n\to\infty} T_n = T$.
Find the least value of n for which $T - T_n < 0.5$.

(b) Let $S_n = u_1 + u_2 + \dots + u_r + \dots + u_n$ where each $u_r > 0$.

Write u_n as a difference of two sums and show that $\lim_{n\to\infty} u_n = k > 0$ implies that the infinite series $u_1 + u_2 + \dots + u_r + \dots$ is divergent.

Test for convergence:-

$$\frac{1+3(1^2)}{1+1^2} + \frac{1+3(2^2)}{1+2^2} + \dots + \frac{1+3(r^2)}{1+r^2} + \dots$$

7. Determine real numbers a, b such that
$$\frac{x+1}{x^2(x+2)^2} = \frac{a}{x^2} + \frac{b}{(x+2)^2}$$
 for all

 $x \in \mathbb{R} \setminus \{0, -2\}.$

Hence, or otherwise, find a formula for the sum of the first n terms of the series

$$\sum_{r=1}^{\infty} \frac{r+1}{r^2 (r+2)^2}$$
 and deduce that the sum of the series is $\frac{5}{16}$.

8. The random variable x has a binomial distribution such that $\overline{x} = 12$ and $\sigma = 5$. Estimate the probability that $x \ge 20$.

Let x be a random variable denoting the number of heads found when an unbiassed coin is tossed 576 times. Find \bar{x} and σ and using $z = \frac{x - \bar{x}}{\sigma}$ estimate the limits between which the number of heads lies so as to have a probability of 95% of being correct.

OR

If t is a real number and r is a point in a line ab, prove, with respect to any origin not in ab, that

$$\vec{r} = \vec{tb} + (1-t)\vec{a}.$$

If p is any point in the interior of a \triangle abc, prove that

$$\vec{p} = x \vec{a} + y \vec{b} + z \vec{c}$$

where x, y, z are positive numbers less than 1 and x + y + z = 1.

