## LEAVING CERTIFICATE EXAMINATION, 1978

## MATHEMATICS - HIGHER LEVEL - PAPER I (300 marks)

## SAMPLE PAPER

Attempt Question 1 (100 marks) and FOUR other questions (50 marks each)

- 1. (i) Find the value of t for which the simultaneous equations 2x + 3y = 6; 5x + ty = 15 have more than one solution.
  - (ii) How many 4 figure natural numbers can be made from 2, 2, 4, 5, 6 ?
  - (iii) Without evaluating the binomial coefficients, prove that

$$\begin{pmatrix} 20 \\ 0 \end{pmatrix} + \begin{pmatrix} 20 \\ 2 \end{pmatrix} + \begin{pmatrix} 20 \\ 4 \end{pmatrix} + \cdots + \begin{pmatrix} 20 \\ 20 \end{pmatrix} = \begin{pmatrix} 20 \\ 1 \end{pmatrix} + \begin{pmatrix} 20 \\ 3 \end{pmatrix} + \begin{pmatrix} 20 \\ 5 \end{pmatrix} + \cdots + \begin{pmatrix} 20 \\ 19 \end{pmatrix}$$

- (iv) Find the equations of the pair of lines  $6x^2 + xy y^2 14x + 3y + 4 = 0$ .
- (v) If the x-axis is a tangent to the circle  $x^2 + y^2 + 2gx + 2fy + c = 0$ , express c in terms of g.
- (vi) Find  $\begin{pmatrix} 1.6 & -3.5 \\ -2.8 & 6.0 \end{pmatrix}^{-1} \text{ and solve } \begin{pmatrix} 1.6 & -3.5 \\ -2.8 & 6.0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$
- (vii) If  $A = \begin{pmatrix} 4 & 3 \\ -1 & 1 \end{pmatrix}$  and  $B = A^2$ , find B. Is AB = BA?
- (viii) If  $\tan \alpha = \frac{4}{3}$ ,  $0 < \alpha < \frac{\pi}{2}$ , find  $\tan \frac{\alpha}{2}$  without using the Tables.
- (ix) Find the  $\lim_{x \to 0} \frac{1}{x} \sin 3x$ .
- (x) Let e be the identity of a multiplicative group G. Suppose  $g \in G$  such that  $g^5 = g^{17} = e$ . Prove that g = e.

OR

- (x) Find the coordinates of the vertex and of the focus of the parabola  $x^2 + 2x + 4y 3 = 0$ .
- 2. (a) Given the simultaneous equations

$$2x - y + 2z = 3 
x + 3y - z = 2 
3x + 2y + z = t$$

find a value of t for which (i) there is no solution (ii) there is an infinity of solutions. Is there a value of t for which there is only one solution?

(b) If (1 - i) is a root of the equation  $2x^3 - 5x^2 + kx - 2 = 0, k \in \mathbb{R},$ 

find the value of k and the other two roots.

3. Prove that  $(1 + x)^n = \sum_{r=0}^n \binom{n}{r} x^r$  for  $n \in \mathbb{N}_0$ .

Write out the first 3 terms of the binomial expansion  $(1 + 2x)^{\frac{2}{3}}$ . If x is so small that its square and higher powers may be neglected, find an approximation of the form a + bx for

$$\frac{\sqrt[3]{(1+2x)^2}}{4-x} \ .$$

4.  $L_1$  and  $L_2$  are two lines which intersect on the y-axis and which make angles measuring 60° and 30°, respectively, with the positive sense of the x-axis. If the area of the region enclosed by  $L_1$  and  $L_2$  and the x-axis is  $\sqrt{3}$  units, find the equations of  $L_1$  and  $L_2$ .

Find also the area of the parallelogram enclosed by the four lines.

5. P and Q are two circles which touch externally. The centre of P is (12, 5) and the equation of Q is  $x^2 + y^2 = 16$ . Find the equation of (i) P, (ii) the common tangent at the point of contact, (iii) the length of the segment of the x-axis cut off by P.

- 6. (a) If  $\vec{t}$  and  $\vec{f}$  are orthonormal vectors and f is a linear transformation such that  $f(\vec{t}) = 2\vec{t} + \vec{f}$  and  $f(\vec{f}) = \vec{t} + 2\vec{f}$ , find the image of the  $\Delta o$  a b under f where o is the origin,  $\vec{a} = \vec{t} + 4\vec{f}$  and  $\vec{b} = 4\vec{t} \vec{f}$ .
  - (b) Write down the matrix of a rotation, K, of angle  $\theta$  where  $0 < \theta < \frac{\pi}{2}$ , about the origin.

Tan  $\theta$  is the gradient of a line L which contains the origin and  $S_L$  is the axial symmetry in L. Prove that  $\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$  is the matrix for  $S_L$ .

What is the image of the line  $x + y \tan \frac{\theta}{2} = 0$  under  $S_L \circ K$ ?

- 7. (a) Prove that  $\cos (A B) = \cos A \cos B + \sin A \sin B$ .
  - (b) Prove  $\cos 3\theta = 4 \cos^3 \theta 3 \cos \theta$ .
  - (c) Write down the period of the function  $f: R \to R: x \to 3 \sin \frac{2x}{3}$ . If g is a trigonometrical function such that the period of  $3 \sin \frac{2x}{3} + g(x)$  is  $6 \pi$ , find one such function g.
- 8. (a) Let A = {0, 1, 2, 3} and B = {1, 3, 5, 7}.
  Prove that A is a group under addition (mod 4) and that B is a group under multiplication (mod 8).
  Prove also that A and B are not isomorphic groups.
  - (b) Let P be the set of all subsets of a set S. Suppose that P is a group under union. Prove that the empty set is the identity element of P and hence show that S is the empty set.

## OR

- 8. (a) Find the equation of the tangent to  $y^2 = 8x$  which is parallel to the line x = 3y.
  - (b) Find (i) the slope (ii) the equation of the tangent to the parabola  $y^2 = 4ax$  at the point  $p(at^2, 2at)$ . If s is the focus and pk is a line parallel to the axis of the parabola, prove that ps and pk make angles of equal measure with the tangent at p.