AN ROINN OIDEACHAIS SPECIMEN PAPER SET B.

LEAVING CERTIFICATE EXAMINATION

MATHEMATICS - HIGHER COURSE - PAPER I.

- 1. The equations of two straight lines are 3x + y + 12 = 0 and x + 2y 1 = 0. Find (i) the acute angle between them, (ii) the distance of their point of intersection from the origin, (iii) the area of the triangle formed by them and the x axis, (iv) the equations of the lines drawn perpendicular to them and containing the point (2, 3).
- 2. Find the radius and the coordinates of the centre of each of the circles $x^2 + y^2 6x 4y + 11 = 0$ and $x^2 + y^2 + 4x + 6y 19 = 0$ and show that the circles touch externally.

Find the equation of the tangent at their point of contact.

- 3. (a) A chord of the parabola $y^2 = \mu ax$ subtends a right angle at the vertex. Find the locus of the mid-point of the chord.

 (b) Prove that the curve whose equation is $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ has the x axis and the y axis as axes of symmetry, and has the origin as a centre of symmetry. Prove that a is the shortest distance from the origin to the curve.
- 4. (a) If (\vec{t}, \vec{j}) is an orthonormal basis, prove that the vector $a\vec{i} + b\vec{j}$ is orthogonal to the line whose equation is ax + by + c = 0.
 - (b) Prove that the orthogonal projection of \vec{v} on the non-zero vector \vec{x} is $\frac{\vec{v} \cdot \vec{x}}{|\vec{x}|^2} \cdot \vec{x}$.
 - (c) Prove that the length of the perpendicular from the point (x_1, y_1) to the line ax + by + c = 0 is $\frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$.
- 5. (a) Let T be a transformation of R^2 represented by the matrix $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ Show that $T(\vec{o}) = \vec{o}$, $T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$, $T(\alpha \vec{x}) = \alpha T(\vec{x})$, when $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, $\vec{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ and $\vec{o} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
 - (b) What is meant by a linear transformation ? Show that reflection in the x axis is a linear transformation and find its matrix. Is reflection in the line x = 1a linear transformation ? Why or why not ?
- 6. (i) Indicate, with proof, which of the following are linear transformations.
 - (a) $F : \mathbb{R}^2 \to \mathbb{R}^2$ defined by F(x, y) = (2x + y, y),

 - (a) $F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $F(x, y) = (x^2, y)$, (c) $F: \mathbb{R}^2 \to \mathbb{R}$ defined by F(x, y) = (x, y), (d) $F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by F(x, y) = (x + 3, y + 2).
 - (ii) Prove that the composition of two linear transformations is a linear transformation.
- 7. (a) If (\vec{t}, \vec{j}) is an orthonomal basis of the pointed plane and f is the reflection in the line $R\vec{t}$, and g is the orthogonal projection on the line $R(\vec{t}+\vec{j})$ find the matrix of each of the following:

$$f, g, g \circ f, f \circ g.$$

- (b) By finding the images of (1, 1) and (2, 2) by $g \circ f$, prove that the mapping $g \circ f$ is not injective.
- 8. (a) Prove De Moivre's Theorem, i.e. $(\cos\theta + i \sin\theta)^n = \cos n\theta + i \sin n\theta$, when $n \in \mathbb{Z}$. Hence, or, otherwise, express $\cos 5\theta$ as a polynomial in $\cos\theta$. (b) Sketch the graph of each of the following functions:

 $x \to |x|$; $x \to |\sin x|$; $x \to \frac{1}{2}(\sin x + |\sin x|)$ where $x \in \mathbb{R}$.

- 9. If Z_1 , Z_2 and Z_3 are complex numbers and if R means "the real part of" prove
 - $(1) |R(Z)| \leq |Z|;$
 - (11) $|Z_1 + Z_2|^2 = |Z_1|^2 + |Z_2|^2 + 2R(Z_1|\overline{Z}_2);$

(111) $|Z_1 + Z_2| \le |Z_1| + |Z_2|$

(Geometrical arguments will not be accepted.)

- 10. Define a group.
 - (1) Prove that the set of the 3 cube roots of unity is a group under multiplication.
 - (ii) If G, * is a group prove that $\forall a, b \in G : (a * b)^1 = b^1 * a^1$. $(x^1$ denotes the inverse of $x_{\bullet})$

- (a) Two dice are thrown together. What is the probability of a score of 8 ?
 (b) In a large constituency 80% of the electorate voted for party A. If 10 people, chosen at random in the constituency, were asked which way they voted, what would be the probability that exactly 8 voted for party A ?