ROINN OIDEACHAIS

SPECIMEN PAPER

LEAVING CERTIFICATE EXAMINATION

MATHEMATICS - HIGHER COURSE - PAPER I - SET A

1. The coordinates of the vertices of a triangle are (-4, 3), (0, -5) and (3, 4). Find the coordinates of h the orthocentre.

Show that o, the origin, is the circumcentre of the triangle. If g is the centroid (the point of intersection of the medians), find the ratio in which g divides [oh].

2. A circle is represented by the equation (x + 1)(x + 3) + (y - 4)(y + 2) = 0, find the radius and the coordinates of the centre, and show that the circle touches the straight line 3x - y + 17 = 0.

The circle is divided into two segments by the straight line y = 2x; show that the angle in one segment is an angle of 45°.

3. (a) Define a parabola. The focus of a parabola is the point (2, 3) and y + 3 = 0 is the equation of the directrix. Find the equation of the parabola.

(b) Find the focus and directrix of the parabola $2x^2 + 6y - 10x + 17 = 0$.

- (c) Find the values of m and c for which the line y = mx + c is a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 4. (a) Explain what is meant by saying that the scalar product of two vectors is (i) bilinear, (ii) positive definite.
 - (b) Let p, q, r, s be the lengths of the sides of a quadrilateral where the side of length p is opposite the side of length r.

 Prove that $p^2 + r^2 = q^2 + s^2$ if and only if the diagonals are perpendicular.
- (i) \vec{a} and $-\vec{a}$ are the end points of a diameter of a circle with centre the origin and radius r. If \vec{p} is any point of the plane, prove that $(\vec{p}-\vec{a})\cdot(\vec{p}+\vec{a})=|\vec{p}|^2-r^2$.
 - (ii) \vec{x} , \vec{y} , \vec{u} , \vec{v} are points of a circle with centre the origin. The lines \vec{x} \vec{y} and \vec{u} \vec{v} intersect in \vec{p} . Prove that $|\vec{p} - \vec{x}| |\vec{p} - \vec{y}| = |\vec{p} - \vec{u}| |\vec{p} - \vec{v}|$.
- 6. (a) Define a linear transformation of the pointed plane Π_0 .
 - (b) Prove that under a linear transformation the image of a line is either a line or a
 - (c) If f is a linear transformation and $\mathcal L$ is the set of lines of the plane, prove that $A, B \in \mathcal L$ and f(A), $f(B) \in \mathcal L$ and $A \mid B$ implies $f(A) \mid f(B)$. [Hint: if \vec{a}_1 , $\vec{a}_2 \in A$ and \vec{b}_1 , $\vec{b}_2 \in B$ then $\vec{a}_1 - \vec{a}_2 = k(\vec{b}_1 - \vec{b}_2)$ $k \in \mathbb{R}$.]

7. Write down the matrix (with respect to an orthonormal basis) of the rotation r of the plane with centre the origin which maps the point (1, 0) on to the point $(\frac{3}{5}, -\frac{4}{5})$.

What is the image of (5, 20) under r ? Of what point is (4, 18) the image ? Find the measure (in degrees between 0° and 360°, to the nearest degree) of the angle of this rotation.

8. Define a periodic function. If the function f has a period k prove that 2k is also a period and that -k is a period.

Find the least positive period of $x \to \sin x$, $x \to \sin \frac{\pi x}{5}$, $x \to 7 \cos \left(5 - \frac{3\pi x}{2}\right)$, $x \to \sin x + \cos x$.

- 9. (i) Define the conjugate of a complex number.
 - (ii) If z_1 and z_2 are complex numbers prove that $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ and $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$.
 - (iii) If $f(z) = a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n$ where a_0 , a_1 $a_n \in \mathbb{R}$ and $z \in \mathbb{C}$ prove that f(z) = f(z).
 - (iv) If w is a root of the equation f(z) = 0 prove that \overline{w} is also a root.
- 10. Let $R_0 = R \setminus \{o\}$ and $G = R_0 \times R$. An operation * is defined on G as follows: (a,b)*(c,d)=(ac,bc+d). Prove G_0 * is a group. Is the group commutative? What is the inverse of (5,3) ?
- 10. (a) If p_1 , p_2 , p_3 are the probabilities of the events E_1 , E_2 , $E_1 \cap E_2$ respectively, what relation connects p_1 , p_2 , p_3 when (i) E_1 , E_2 are independent events (ii) E_1 , E_2 are not independent events ? Two cards are drawn at random from a pack of 52 cards. Find the probability that both cards are aces if (i) the first card picked is replaced (ii) the first card picked is not replaced.
 - (b) Two boys A and B toss an unbiassed penny and the first to obtain a "head" wins. If A has first toss find the probability that (i) A wins on his first toss (ii) B wins on his first toss (iii) A wins on his second toss. Calculate the probability that A wins.