AN ROINN OIDEACHAIS INTERMEDIATE CERTIFICATE EXAMINATION 1976

SAMPLE PAPER

MATHEMATICS - HIGHER COURSE - PAPER II (300 marks)

SECTION A (100 marks)

Attempt all questions.	You should not spend more than 50 minutes on this section.
Answer each question by	writing either (a), (b), (c), (d) in the box under each question number answer, cross out your first choice and write your new answer near
the box.	

Thi	s par	per <u>must</u>	be enclo	osed in you	ır ans	wer b	ook.						
1.	121	3 + 33 ₅	$= y_{10}$	Then y	is								
				18		30		(d)	34.				
2.	£84	0 is divid	ded bety	veen A, B	and C	in t	he ratio	4 :	2:1,:	respective	ely.	A's sha	re is
	(a)	£420	(b)	£120	(c)	£480)	(d)	£105.				
3.	Α	rectangular piece me ece cut o	asuring	of hardboar 5 cm long	d 20 and 3	cm le 3 cm	ong and wide is	15 cut	cm wide	has a r	mass o	f 1500 ammes o	grammes. of the
	(a)	70	(b)	100	(c)	60		(d)	75.				
4.	Who	en rates a luation is	re at £0 £25.	6.60 in the The fraction	£, a	man the f	pays £6	66 p s pai	er annun id is	n on a l	nouse	whose r	ateable
	(a)	<u>2</u> 5	(b)	1/2	(c)	3 5		(d)	710				
5.	A r	nan's wee 35p in t	kly <mark>w</mark> ag he £.	e is £40. His weekly	His tax	weekl is	y tax-fi	ee a	allowance	is £12.	He	pays in	come tax
		£14		£12·53			0 ((e)	£4•20.				
6.	The	frequenc		oution table		marks	awarde	d in	7	given to	100 p	upils is	
				iber of pur	_	2	14	60		4			
П		mean m	_		(-)	_	,	. 1)	1.15				
	(a)		(b) 3			5	((a)	1.15.				
7.	A =	= {1, 3,	5, 7},	$B = \{1, 2,\}$, 3}.	The	en #(A /	∆ B)	is				*
	(a)	3	(b) 2		(c)	5	((c)	7.				
8.	x *	y is defin	ned by 2	$x * y = x^2$ $-1, z = 0,$	-3x	y — .	y^2 .	-					
	(a)		(b) 9	ı, z — u,	(x *) (c)			d)	6.				3

(d) 6.

9. If (x, y) satisfies both $2x + 3y = 9$ and $3x + 2y = 1$, then (x, y) is
(a) (3, 1) (b) (3, -4) (c) (-3, 5) (d) (1, 1)
10. $x^3 - 8y^3$ is divided by $x - 2y$. The result is
(a) $x^2 + 4xy + 4y^2$ (b) $x^2 + 4y^2$ (c) $x^2 - 2xy + 4y^2$ (d) $x^2 + 2xy + 4y^2$.
11. $27^{-\frac{2}{3}}$ is
(a) 1/9 (b) -18 (c) -2/3 (d) -9.
12. $(x-5)(y-2)=0$. One of the following conclusions is false. Which is the <u>false</u> conclusion?
(a) $(x = 5) \Rightarrow (y = 2)$ (b) $(x = 3) \Rightarrow (y = 2)$ (c) $(x = 5) \Rightarrow y$ can have any value (d) $(x \neq 5) \Rightarrow (y = 2)$.
13. The domain of the relation $\{(x, y) \mid y = \sqrt{x}\}$ is $\{0, 1, 4\}$. The range is
(a) $\{0, 1, 2\}$ (b) $\{0, -1, -2\}$ (c) $\{-2, -1, 0, 1, 2\}$ (d) $\{0, 1, 16\}$.
14. $f: x \to 2x - 1$. Then $f^2(x)$ [i.e $f(f(x))$] is
(a) $4x - 2$ (b) $4x - 3$ (c) $(2x - 1)^2$ (d) $4x^2 + 1$.
15. log ₄ 8 is
(a) 2 (b) -2 (c) $3/2$ (d) $\frac{1}{2}$.
16. The graph of the function f is shown here. Which one of the following is most likely correct?
(a) $f(x) = (2 + x)(1 - x)$ (b) $f(x) = (x + 2)(x - 1)$ (c) $f(x) = (x - 2)(x + 1)$ (d) $f(x) = (2 - x)(1 + x)$.
17. $\log x = 2 \log 3 + \log 4 + \log 6$. Then x is
(a) 144 (b) 16 (c) 216 (d) 19.
18. The factors of $x^2 - 4y^2 - x - 2y$ are
(a) $x(x-1) - 2y(2y+1)$ (b) $(x-2y)(x+2y-1)$ (c) $(x+2y)(x-2y)+1$ (d) $(x+2y)(x-2y-1)$.
19. Which one of the following conclusions is not always true?
(a) $2x > 6 \Rightarrow x > 3$ (b) $-3x > 3 \Rightarrow x < -1$ (c) $(x < 3 \text{ and } y < 2) \Rightarrow xy < 6$. (d) $(x > 3 \text{ and } y > 2) \Rightarrow x + y > 5$.
20. The perimeter of a rectangle is 20 cm and its area is 24 cm ² . If the length of one of its sides is x cm, then the quadratic equation which gives the lengths of the sides is
(a) $x^2 - 10x + 24 = 0$ (b) $x^2 - 20x + 24 = 0$ (c) $x^2 + 10x - 24 = 0$ (d) $x^2 - 10x - 24 = 0$.

SECTION B (200 marks)

Attempt QUESTION 21 and THREE other questions

$$bc$$

where $a = 0.825$, $b = 18.1$, $c = 0.0094$

(20 marks)

(b) Using the tables, page 20 to page 27, or otherwise, find, correct to three significant figures,

$$\frac{1}{\sqrt{x}} + y^4$$

where x = 0.0682, y = 1.069.

(20 marks)

22. (a) Find, to one place of decimals, the roots of the equation $3x^2 - x - 1 = 0$.

(20 marks)

(b) Express as a single fraction

$$\frac{2}{2x-1} - \frac{1}{2x+1} - \frac{1}{x-2}$$

and verify your answer by putting x = 0.

(20 marks)

23. The function f is defined by $f: x \to x^2 - 2$, $x \in \mathbb{R}$.

- (i) What is f(-1)? (ii) For what values of x is f(x) = x?
- (iii) If g is the function $x \to 2x + 1$, what is f(g(x))?
- (iv) For what value of x is f(g(x)) = g(f(x))?

(40 marks)

24. Draw the graph of the function $f: x \to 2x^2 - x - 3$, $x \in \mathbb{R}$, in the domain $-2 \le x \le 2$. Use your graph (i) to solve the inequality $2x^2 - x - 3 \le 0$, (ii) to estimate the minimum value of $2x^2 - x - 3$.

(40 marks)

25. A person calculated that by increasing his average walking speed by 1 km per hour he would save 20 minutes on a 10 km journey. What was his original speed?

(50 marks)

26. (a) Solve the simultaneous equations

$$2x = y + 2$$
$$2y = x - 1.$$

(25 marks)

(b) Let $k - \frac{1}{k} < 0$, $k \in \mathbb{R}$, and $k \neq 0$.

Then $k - \frac{1}{k} < 0 \Rightarrow k < \frac{1}{k} \Rightarrow k^2 < 1$.

Verify that $k=\frac{1}{2}$ and $k=-\frac{1}{2}$ satisfy $k^2<1$ but not $k-\frac{1}{k}<0$. Explain why this is so.

(25 marks)

27. An ice-cream distributer divides his year into quarters for sales recording purposes. The value in thousands of pounds of each quarterly sales is given in the following table:

	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Year 1	1*2	4.6	6•1	2.5
Year 2	1*6	5•0	6•5	2•9
Year 3	1•6	5•4	6•5	3•3

- (i) Illustrate these sales by a trend graph.
- (ii) Calculate the 4 point moving average and illustrate this on your graph.

(60 marks)