LEAVING CERTIFICATE EXAMINATION, 1997

57895

MATHEMATICS — ORDINARY LEVEL — PAPER I (300 marks)

THURSDAY, 12 JUNE — MORNING, 9.30 to 12.00

Attempt SIX QUESTIONS (50 marks each)

Marks may be lost if all your work is not clearly shown or if you do not indicate where a calculator has been used.

- 1. (a) A machine broke down at 0935 hours. It was repaired at 1210 hours. For how many hours and minutes was the machine out of order?
 - (b) IR£2500 was invested for three years at compound interest.

The rate of interest was 4% per annum for the first year and 3% per annum for the second year.

Calculate the amount of the investment after two years.

If the investment amounted to IR£2744.95 after three years, calculate the rate of interest per annum for the third year.

- (c) (i) The length and breadth of a rectangle are in the ratio 9: 5, respectively. The length of the rectangle is 22.5 cm. Find its breadth.
 - (ii) Tea served in a canteen is made from a mixture of two different types of tea, type A and type B. Type A costs IR£4.05 per kg. Type B costs IR£4.30 per kg. The mixture costs IR£4.20 per kg.

If the mixture contains 7 kg of type A, how many kilograms of type B does it contain?

2. (a) Solve for x

$$3(2x - 1) = 4x.$$

- (b) Find the solution set E of $9 2x \ge 7$, $x \in \mathbb{N}$. Find the solution set H of $\frac{1}{4}x - \frac{1}{3} \le \frac{5}{12}$, $x \in \mathbb{N}$. Write down the elements of the set H \ E.
- (c) Simplify

$$(\sqrt{x} + \frac{3}{\sqrt{x}})(\sqrt{x} - \frac{3}{\sqrt{x}})$$
 where $x > 0$.

Hence solve for x

$$(\sqrt{x} + \frac{3}{\sqrt{x}})(\sqrt{x} - \frac{3}{\sqrt{x}}) = 8$$
 where $x > 0$.

OVER →

3. (a) Express p in terms of q and t when

$$2p - q = 3(p - t).$$

(b) Solve the equation

$$2x^3 + 3x^2 - 5x - 6 = 0.$$

(c) Let f(x) = (2 + x)(3 - x), $x \in \mathbb{R}$. Write down the solutions (roots) of f(x) = 0.

Let g(x) = 3x - k.

The equation f(x) + g(x) = 0 has equal roots. Find the value of k.

4. (a) Simplify

$$3(1 + 5i) + i(3 - 2i)$$

and express your answer in the form p + qi, where $p, q \in \mathbb{R}$ and $i^2 = -1$.

(b) (i) For what values of a is

$$|a + 8i| = 10$$
 where $a \in \mathbb{R}$?

(ii) If w = 4i, verify that

$$w^3 - w^2 + 16w - 16 = 0$$
.

(c) Let z = 1 + i and let \overline{z} be the complex conjugate of z. Express $\frac{z}{\overline{z}}$ in the form x + yi, $x, y \in \mathbb{R}$.

Hence, solve

$$k\left(\frac{z}{\overline{z}}\right) + tz = -3 - 4i$$

for real k and real t.

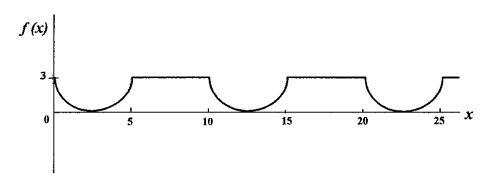
5. (a) $T_1 + T_2 + T_3 + \dots$ is a geometric series. The first term, T_1 , is 1 and the common ratio is 2.

Show that

$$T_3 + T_5 = 2(T_2 + T_4).$$

(b) The first four terms of an arithmetic sequence are given as $a, -4, b, 6, \dots$

Find


- (i) the value of a and the value of b
- (ii) T₅, the fifth term.
- (c) In an arithmetic series

$$S_n = n^2 + n,$$

where S_n is the sum to the first n terms.

Write down

- (i) S_{10} , the sum to 10 terms
- (ii) S_{11} , the sum to 11 terms
- (iii) T_{11} , the 11th term.
- **6.** (a)

The graph shows portion of a periodic function $f: x \to f(x)$.

Write down the period and range of the function.

What is the value of f(77.5)?

(b) Differentiate from first principles

$$3x^2 - 2$$

with respect to x.

(c) Let $f(x) = ax^3 + bx + c$, for all $x \in \mathbb{R}$ and for $a, b, c \in \mathbb{R}$.

Use the information which follows to find the value of a, of b and of c:

- (i) f(0) = 3
- (ii) the slope of the tangent to the curve of f(x) at x = 1 is -18
- (iii) the curve of f(x) has a local minimum at x = 2.

OVER →

7. (a) Differentiate with respect to x

(i)
$$-x^2$$

(ii)
$$x^4 + x + 1$$
.

(b) (i) Find
$$\frac{dy}{dx}$$
 when $y = (x^2 - 3)(1 - x)$.

(ii) Find the value of
$$\frac{dy}{dx}$$
 at $x = -1$ when $y = (3x + 1)^4$.

(c) The distance s metres of an object from a fixed point at t seconds is given by

$$s=\frac{t+1}{t+3}.$$

- (i) At what time is the object 0.75 m from the fixed point?
- (ii) What is the speed of the object, in terms of t, at t seconds?
- (iii) After how many seconds will the speed of the object be less than 0.02 m/s?
- 8. (a) Let $f(x) = x^2 4x$, for $x \in \mathbb{R}$.

Find f'(x), the derivative of f(x).

For what value of x is f'(x) = 0?

(b) Find the equation of the tangent to the curve

$$y = x^3 - 4x + 7$$

at the point where x = 1.

(c) Draw the graph of

$$g(x) = \frac{1}{x+2}$$

for $0 \le x \le 4$, $x \in \mathbb{R}$.

Using the same axes and the same scales draw the graph of

$$h(x) = x - 2.$$

Show how your graphs may be used to estimate the value of $\sqrt{5}$.