47151

MATHEMATICS - ORDINARY LEVEL - PAPER II

FRIDAY, 11 JUNE - MORNING, 9.30 to 12.00

Attempt QUESTION 1 (100 marks) and FOUR other questions (50 marks each)

Marks may be lost if necessary work is not clearly shown
or if you do not indicate where a calculator has been used.

1. (i) A belt passes round two touching circular wheels, each of radius length 7 cm.

Calculate the length of the belt.

Take $\pi = \frac{22}{7}$.

- (ii) Express q in terms of p and r, if $p = \sqrt{2q r}$.
- (iii) The two triangles pqr, abc are between parallel lines. Find the value of

area of the triangle abc area of the triangle pqr.

(iv) pqrs is a quadrilateral in which $pr \perp qs$. Prove $|pq|^2 + |rs|^2 = |qr|^2 + |ps|^2$.

(v) [pq] is a diameter of the circle.
 [pc] is a diameter of the smaller circle.
 Prove mc || rq.

(vi) pqrs, in that order, is a parallelogram in which the coordinates p(-3, -2), q(1, -1) and r(3, 5) are known. Find the coordinates of s.

- (vii) The point q(3, k) is on the line 2x 3y = 12. p is the point (-3, -6). Calculate the mid-point of [pq].
- (viii) Find the points of intersection of the circle $x^2 + y^2 + 9x 16 = 0$ and the y-axis.

(ix)

In the triangle pqr, $pq \perp qr$ and |pq| = 5 cm. If $\cos |\angle rpq| = 0.4$, calculate |pr|.

(x) opqr is a parallelogram. Express \overrightarrow{s} in terms of \overrightarrow{p} and \overrightarrow{r} , if \overrightarrow{o} is the origin, and |ps| = |sq|.

2. Water which just filled a cylinder was used to just fill an upright cone-shaped vessel and partly fill another identical cone-shaped vessel (see diagram).

Without giving π a value, find the volume of water which just filled

- (i) the cylinder
- (ii) the first upright, cone-shaped vessel.

Calculate (iii) the height of water left in the cylinder after the first coneshaped vessel was filled.

(iv) the height of water in the second cone-shaped vessel.

- 3. (i) Prove that the measure of the angle at the centre of a circle is twice the measure of an angle at the circle standing on the same arc.
 - (ii) cdts is a parallelogram and c is the centre of the circle. Prove $| \angle dts | = 120^{\circ}$.

(iii) c is the centre of the circle. Prove, $|\angle cpq| + |\angle qrp| = 90^{\circ}$

4. (a) The corresponding angles of two triangles are equal in measure, as shown.

Prove that the corresponding sides of the two triangles are in proportion.

- (i) In the triangle pqr, $pq \perp qr$ and $st \parallel pq$. Calculate $\mid qt \mid$, if $\mid pq \mid = 12$ cm, $\mid st \mid = 8$ cm and $\mid rt \mid = 6$ cm.
- (ii) If $tw \perp pr$, calculate |wr|.

5.

ps is the line x + 3y - 12 = 0pq is the line 3x - y + 14 = 0.

Calculate the coordinates of

- (i) p.
- (ii) s, the point of intersection of ps and the y-axis.

Given that r is the point (-1, 1) and that pqrs is a parallelogram, find the equation of

- (iii) rp
- (iv) sq.
- (v) Verify that pars is a square.

6.

 $S_1: x^2 + y^2 = 25$ is a circle.

Write down the length of its radius.

 S_2 is the image of S_1 under a translation $(0, 0) \rightarrow (-3, 4)$. What is the equation of S_2 ?

T is the tangent at (4, 3) to S_1 . What is the equation of T?

Verify that the line 4x + 3y = 25 is a tangent to S_2 and find the coordinates of the point of tangency.

7.

A vertical pole gm stands on level ground. (i) The point b is 60 m from the base of the pole. The angle of elevation $| \angle gbm | = 34^{\circ} 15'$ (or 34.25°). Calculate | gm | correct to two places of decimals.

60 m

m

(ii) A point c on the ground is 45 m from g and $| \angle bgc | = 126^{\circ} 40'$.

(b) Sketch the graph of $2\cos x$ in the domain $-\pi \le x \le \pi$.

Use the graph to estimate the range of values of x for which $\cos x < \frac{3}{4}$.

8.

(a) The diagram shows points o, p, q on a grid where o is the origin.

Copy the grid and mark points k_1 and k_2 such that

$$\overrightarrow{k_1} = \overrightarrow{p} + \overrightarrow{q}$$

$$\overrightarrow{k_2} = \overrightarrow{p} - \overrightarrow{q}$$
.

If $\overrightarrow{q} = \overrightarrow{i} + \overrightarrow{2j}$, express \overrightarrow{p} , $\overrightarrow{k_1}$, $\overrightarrow{k_2}$, in terms of \overrightarrow{i} , \overrightarrow{j} .

Verify
$$\overrightarrow{p} = \frac{1}{2} (\overrightarrow{k_1} + \overrightarrow{k_2})$$
.

(b) The diagram shows a triangle opq with r the mid-point of [pq]. $|ot| = \frac{3}{4} |or|.$

If o is the origin, express

$$\overrightarrow{to}$$
 + \overrightarrow{tp} + \overrightarrow{tq}

in terms of \overrightarrow{p} and \overrightarrow{q} .

If $\overrightarrow{r} = 4\overrightarrow{i} + 4\overrightarrow{j}$, show that

$$\overrightarrow{to} + \overrightarrow{tp} + \overrightarrow{tq} = -(\overrightarrow{i} + \overrightarrow{j}).$$

