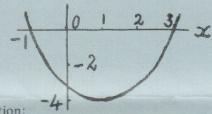
MATHEMATICS - ORDINARY LEVEL - PAPER II (300 marks)

MONDAY, 16 JUNE - MORNING, 9.30 to 12.00

Attempt QUESTION 1 and FOUR other questions

- 1. (i) Express 0.75 as a percentage of 3.75.
 - (ii) Calculate the sum of the first 50 terms of the arithmetical sequence 1, 2, 3, 4,
 - (iii) Taking 1 as the first term write out the first three terms of the binomial expansion of $(1 + 0.01)^{10}$


and calculate their sum.

(iv) Two people A and B scored marks as shown

Subjects		English	Irish	Mathematics
Marks	A	40	74	90
	В	50	60	90

If weights of 4, 3, 3, respectively, are assigned to English, Irish and Mathematics, find which of A or B scored higher overall.

- (v) x + 1 is a factor of $x^3 3x^2 + kx 1$. Find the value of k.
- (vi) Part of the graph of $x \to (x-1)^2 4$ is shown. State the range of values of x for which $(x-1)^2 \le 4$

(vii) Draw a histogram to represent the frequency distribution:

Class	0 - 5	5 - 15	15 - 20	20 - 30
Frequency	5	20	10	10

- (viii) Factorise $27x^3 1$.
- (ix) For what values of x does the slope of the tangent to $y = 4 (x 1)^2$ have values greater than zero?
- (x) f and g are two functions defined on R. $f: x \to x^2 1$ $g: x \to 1 x^2$ Write the composite function fg in terms of x.

(100 marks)

- 2. (a) (i) Verify that $z_1 = 2 + 3i$ is a root of $z^2 4z + 13 = 0$.
 - (ii) Find the value of $|z_i|$.
 - (iii) On an Argand diagram illustrate z_1 and the image of z_1 under the central symmetry in the origin.
 - (b) If $a + ib = \frac{5}{1 + 2i}$, where $a, b \in \mathbb{R}$, calculate the value of a and the value of b.

(40 marks)

3. (a) Solve

$$\frac{x}{x-1} + \frac{1}{(x-1)(x-2)} = \frac{3x}{x-2}$$
 where $x \notin \{1,2\}$.

(b) Solve the simultaneous equations

$$x + 3y = 8$$
$$y - 2z = 1$$
$$z - x = 0$$

- 4. The function $f: x \to 2x^3 3x^2 6x + 2$ is defined on the domain $-2 \le x \le 3$ for $x \in \mathbb{R}$.
 - (i) Draw the graph of f and from the graph estimate the values of x for which f(x) = 0.
 - Use the graph to estimate the least value of f(x) in $0 \le x \le 3$.
 - If $g: x \to f(x) + k$, find the value of k when the x-axis is a tangent to the graph of g in $0 \le x \le 3$.

(50 marks)

5. Assuming the data can be taken at the mid-interval values, calculate the mean and the standard deviation of the following grouped frequency distribution:

Class interval	0 - 4	4 - 8	8 - 12	12 - 16	16 - 20
frequency	2	6	12	6	2

[Note: 0 - 4 means ≥ 0 but less than 4, etc.]

(50 marks)

- 6. (a) Calculate the compound interest on £10 000 for 3 years at 20% per annum.
 - (b) (i) Calculate the sum of the first four terms of the Geometric series $1.2 + (1.2)^2 + \dots$
 - (ii) A person deposited £1000 in a bank on June 1st, each year, for 4 consecutive years. The bank rate of 20% per annum remained steady throughout. When the fourth £1000 had remained at interest for a full year, the person withdrew all four deposits and their interests. How much was withdrawn?

(50 marks)

7. (i) Using the same axes and the same scales and taking $x, y \in \mathbb{R}$ graph the following inequalities:

$$P_1 : y \ge 0$$

 $P_2 : 9x + 5y \ge 1800$
 $P_3 : 4x + 5y \le 1000$

- (ii) Indicate the set of points $A = P_1 \cap P_2 \cap P_3$.
- (iii) Calculate the coordinates of the vertex common to P_2 and P_3 .
- (iv) Calculate the value of 100x + 75y for each vertex of A.

- 8. (a) Differentiate $2x x^2$ with respect to x from first principles.
 - (b) (i) Find $\frac{dy}{dx}$ for $y = \frac{1+x^2}{1-x^2}$, $x \neq \pm 1$ and calculate its value when $x = \frac{1}{2}$.
 - (ii) Find the slope of the tangent to the graph of $y = (3x^2 2x 7)^2$ at x = -1.
 - (c) Find $\frac{dy}{dx}$ for y = (x 4)(x + 2) and hence find (x, y), the coordinates of the local minimum.

Draw a rough sketch of y = (x - 4)(x + 2).

(50 marks)