AN ROINN OIDEACHAIS

(Department of Education).

LEAVING CERTIFICATE EXAMINATION, 1951.

MATHEMATICS.—GEOMETRY.—PASS.

WEDNESDAY, 6th JUNE .- MORNING, 10 TO 12.30.

Seven questions to be answered.

All questions are of equal value.

Mathematical Tables may be obtained from the Superintendent.

- 1. If two chords AB, CD of a circle intersect at P (i) inside the circle, (ii) outside the circle, prove in each case that the rectangle AP,PB is equal to the rectangle CP,PD.
- 2. Show, with proof, how to describe an equilateral triangle about a given circle.

If the radius of the circle be x ins. long, express in terms of x the length of the side of the triangle.

- 3. Show, with proof, how to construct an isosceles triangle ABC so that $\angle ABC = \angle ACB = 2 \angle BAC$.
- 4. Show, with proof, how to divide a given straight line AB (i) internally at P, (ii) externally at Q so that AP: PB=AQ: QB=3: 2. Calculate the length of PQ when AB=6 units.
- 5. Show how to find a third proportional to two given straight lines. Prove your construction.

If LM is a third proportional to two straight lines AB, CD, and if AB, CD are in the ratio a:b, show that AB, LM are in the ratio $a^2:b^3$.

6. ABC is a triangle in which the angle ABC is acute and D is the foot of the perpendicular from A to BC (or to BC produced). Prove that AC²=BA²+BC²-2BC.BD.

State the corresponding theorem when the angle ABC is obtuse. Deduce that in a triangle ABC, $b^2=c^2+a^2-2ca$ cos B.

07

6. Prove that the vertices of a regular octagon are concyclic.

The side of a regular octagon is 2.4 ins. long: find the area of the octagon.

- 7. Write down the expansion of $\sin(A+B)$. Give proof for the case when A and B are positive and $(A+B) < 90^{\circ}$. Find the value of $\sin(A+B)$ when $\sin A = \frac{5}{13}$, $\sin B = \frac{3}{5}$.
- 8. Two small boats, P, Q, are anchored in a harbour. R,S,T, are three points on the strand such that R, S, P are collinear, and R, T, Q are also collinear. If \angle PRQ=42°, \angle PSQ=55° 18′, \angle PTQ=68° 58′, RS=112 yds., RT=243 yds., find, correct to *two* significant figures, the distance, in yards, between P and Q.