AN ROINN OIDEACHAIS

(Department of Education).

LEAVING CERTIFICATE EXAMINATION, 1950.

MATHEMATICS—Algebra—Pass.

TUESDAY, 13th JUNE.-Morning 10 to 12.30.

Six questions may be answered.

All questions are of equal value.

Mathematical Tables may be obtained from the Superintendent.

1. Find the values of x and y which satisfy the simultaneous equations:

$$x^{2}+2y^{2}-7x+3y=2$$

 $2x-y=4$

2. Prove that (2x-1) is a factor of the expression $6x^3+5x^2-34x+15$ and find the other factors.

Hence, or otherwise, find the factors of

$$6(3y-1)^3+5(3y-1)^2-34(3y-1)+15.$$

3. Solve the equation

8,

$$\sqrt{7}$$
 $x-2\sqrt{2x+5} = \sqrt{3x+7}$,

and test your solutions.

Or.

- 3. Express in simplest surd form the square root of $30-12\sqrt{6}$. Simplify $[30-12\sqrt{6}]^{-\frac{1}{2}}$ and calculate its value, correct to three significant figures.
 - 4. Find the value of k so that $4x^2-12x+k$ may be a perfect square. Find the minimum value of $4x^2-12x+20$.

- 4. If $x+\frac{1}{x}=y$, express $x^2+\frac{1}{x^2}$ and $x^3-\frac{1}{x^3}$ in terms of y.
- 5. The 20th term of an Arithmetical Progression is 50 and the 100th term is 290. Find
 - (i) the first term and the common difference,
 - (ii) how many of the terms are each less than 100,
 - (iii) the sum of the first 80 terms.

- 6. (a) Prove the formula for the sum of n terms of a Geometrical Progression.
 - (b) The sum of the first two terms of a Geometrical Progression is 3 and the third term is 4; show that the 4th term is either 8 or $-2\frac{2}{3}$.
- 7. The perimeter of a right-angled triangle is 30 inches and the hypotenuse is 8 inches longer than the shortest side. Find the sides of the triangle and the perpendicular from the right-angle to the hypotenuse.

Or.

7. Using the same axes and the same scales draw graphs of y=(x-1)(x+2) and y=(x+3)(2-x) from x=-3 to x=3. Explain how the graphs can be used to find approximately the

Explain how the graphs can be used to find approximately the roots of the equation $x^2+x-4=0$ and from them find the values of the roots as accurately as you can.