AN ROINN OIDEACHAIS

(Department of Education.)

LEAVING CERTIFICATE EXAMINATION, 1943.

MATHEMATICS—Algebra—Pass.

WEDNESDAY, 9th JUNE .- MORNING, 10 TO 12.30.

Seven questions may be answered.

Mathematical Tables may be obtained from the Superintendent.

1. Express
$$\sqrt{33-18\sqrt{2}}$$
 in the form $\sqrt{x}-\sqrt{y}$. Simplify $\sqrt{33-18\sqrt{2}}-\frac{7}{\sqrt{33+18\sqrt{2}}}$.

[28 marks.]

2. Solve the equations

$$x^2+y^2+5x+4y-11=0$$

 $x^2+y^2-6x-3y-10=0$.

[28 marks.]

3. Define "the logarithm of b to the base a."

Write in their simplest form

$$\log_2\sqrt{8}$$
, $\log_2(\frac{1}{8})$, $\log_a a^x$, $a^{\log_a b}$.

By what factor must \log_{10} N be multiplied in order to give \log_e N, where $e=2\cdot718$?

[28 marks.]

4. If $x=4t^2-3t-10$ and $y=t^2+t-3$, express (i) t^2 , (ii) t in the form ax+by+c.

Hence show that

$$x^2-8xy+16y^2-11x-5y-129=0$$
.

[28 marks.]

5. What is meant by an algebraic identity?

If
$$3x^3-2x^2+5x-7\equiv A+Bx+Cx(x-1)+Dx(x-1)(x-2)$$
, find the values of A, B, C, D. Verify your result.

[28 marks.]

6. The speed of a train A is 5 miles per hour greater than that of a train B and 10 miles per hour greater than that of a train C. For a certain journey C takes 40 minutes more than B and 70 minutes more than A. Find the length of the journey and the speed of each train.

[28 marks.]

7. If, in an arithmetical progression, m times the mth term is equal to n times the nth term, prove that the (m+n)th term is zero. How many terms of the arithmetical progression 16, 15 $\frac{1}{3}$, 14 $\frac{2}{3}$, . . .

give a sum of 170? Account for the two answers.

[29 marks.]

8. The first term in a geometric series is 3 and the second term is 5. Find the least value of n for which the sum of n terms of the series exceeds 10,000.

[29 marks.]

9. Find the sum of all positive integers less than 100 which are (i) not divisible by 3, (ii) not divisible by 5, (iii) divisible neither by 3 nor by 5.

[29 marks.]

10. Using the same axes and the same scales, draw the graphs of the equations

 $y=(1+x)^2(2-x), y=3x,$

from x = -3 to x = 3.

Show that at the point of intersection of the two graphs the value of x satisfies the equation $x^3-2=0$, and hence, from the diagram, find an approximate value for $\sqrt[3]{2}$.

[29 marks.]