AN ROINN OIDEACHAIS.

(Department of Education).

BRAINNSE AN MHEADHON-OIDEACHAIS (Secondary Education Branch).

LEAVING CERTIFICATE EXAMINATION, 1939.

PASS. MATHEMATICS (ALGEBRA)

MONDAY, 19th JUNE-AFTERNOON, 3.30 TO 6 P.M.

Seven questions may be answered.

Mathematical Tables may be obtained from the Superintendent.

- 1. Solve the equations:
 - (i) $\sqrt{x+16} \sqrt{x+5} = 1$,
 - (ii) $(b-c)x^2+(c-a)x+(a-b)=0$.

[25 marks.]

2. Express in simplest surd form the value of the expression:

$$\frac{\sqrt{11+2\sqrt{30}}+\sqrt{11-2\sqrt{30}}}{\sqrt{11+2\sqrt{30}}-\sqrt{11-2\sqrt{30}}}$$

[25 marks.]

3. Find two integers, m and n for which

 $(2.5)^m = 9537$, approximately,

and

 $\sqrt[n]{8747} = 3.66$, approximately.

[25 marks.]

- 4. A and B working together could do a certain work in x days; B and C together could do it in y days; C and A together could do it in z days. Find:
 - (i) how many days it would take A, B, C together to do that work;
 - (ii) how many days it would take A to do it.

[25 marks].

5. Find the sum of 12, $11\frac{1}{2}$, 11, $10\frac{1}{2}$... to 20 terms.

What other number of terms of the series will have the same sum?

[25 marks.]

6. Solve the simultaneous equations

$$\left. \begin{array}{l} \frac{3x+5y}{5x+3y} = \frac{15}{17} \\ (2x+5)(2y+7) = 100 \end{array} \right\}$$

[30 marks.]

- 7. (i) Factorise $x^4 11x^2y^2 + y^4$;
- (ii) Prove that the expression $(a+b+c)^3-2(a+b+c)(a^2+b^2+c^2)-8abc$ is divisible by (b+c-a) and find all the other factors of the expression.

 [30 marks.]
- 8. (i) Prove that the sum of n terms of the series $a, ar, ar^2, ar^3, ar^4, \ldots$ is $\frac{a(r^n-1)}{r-1}$.
 - (ii) Find, in simplest form, the sum of n terms of the series (a+b), (a^3+b^3) , (a^5+b^5) , $(a^7+b^7)+ \cdots$ [30 marks.]
- 9. If α , β represent the roots of the equation $ax^2+bx+c=0$, prove that $-\alpha$, $-\beta$ represent the roots of the equation $ax^2-bx+c=0$. Find in simplest form in terms of x, a, b, c, the two equations whose roots are (i) $\frac{1}{\alpha}$, $\frac{1}{\beta}$; (ii) $(\alpha-3)$, $(\beta-3)$ respectively.

[30 marks.]

10. Using the same axes and the same scales, draw the graphs of

(i)
$$\frac{1}{x+1}$$
; (ii) $(x-1)(x+2)$

from x=-4 to x=3.

From your graphs find one root of the equation $(x^2-1)(x+2)=1$, correct to one decimal place.

[30 marks.]