AN ROINN OIDEACHAIS

(Department of Education).

BRAINSE AN MHEAN-OIDEACHAIS (Secondary Education Branch).

LEAVING CERTIFICATE EXAMINATION, 1933.

PASS.

MATHEMATICS (ALGEBRA)

TUESDAY, 20th JUNE.—AFTERNOON, 3.30 TO 6 P.M.

Seven questions may be answered. 9 (a) or 9 (b) may be answered, but not both. All questions carry equal marks.

Mathematical Tables may be obtained from the Superintendent.

- Using Tables, evaluate: (24·7)^{0·68} and (0·49)^{-2·37}.
- 2. Solve the equations:

(i)
$$x + \frac{1}{y} = 1$$
$$y + \frac{1}{x} = 4$$

(ii)
$$\sqrt{3x^2-7x+3} - \sqrt{3x^2-7x-2} = 1$$
.

- 3. A rectangular piece of tin is 5 ins. longer than it is wide. An open box whose volume is ‡ cubic ft. is made by cutting a six-inch square from each corner and turning up the sides : what are the dimensions of the box ?
- 4. Solve the equation $px^2+qx+r=0$, and show that the sum of the roots is $-\frac{q}{p}$ and their product is $\frac{r}{p}$.

If x=-4.7 is one root of the equation $x^2-4.9x+a=0$, where a is independent of x, find the value of a, and the other root of the equation.

- 5. Express the square root of $\frac{17}{12} \sqrt{2}$ in the form $\sqrt{x} \sqrt{y}$.
- 6. The n^{th} term of a series is 3-5n: write down the first four terms and find the sum of n terms.
- 7. How many integral powers of 3 lie between 1 and 10,000,000? Show that the greatest of those powers is more than double the sum of all the others.
 - 8. If a+b+c=0, prove that
 - (i) $a^3+b^3+c^3=3abc$.
 - (ii) $a^5+b^5+c^5=5abc(c^2-ab)$.
- 9. (a) Use the Binomial Theorem to write down the first four terms of the expansion of $(2a-b)^{20}$. Find the 15th term in its simplest form.

Or,

- 9. (b) Under what condition will the expression ax^2+bx+c have
 - (i) a maximum value?
 - (ii) a minimum value?

Find the minimum value of $3x^2-10x+5$.