AN ROINN OIDEACHAIS

(Department of Education).

BRAINSE AN MHEAN-OIDEACHAIS (Secondary Education Branch).

LEAVING CERTIFICATE EXAMINATION, 1932.

PASS.

MATHEMATICS (I).

MONDAY, 6th JUNE,-AFTERNOON, 3.30 TO 6 P.M.

Seven questions may be answered. 10 (a) or 10 (b) may be answered, but not both. All questions carry equal marks.

Mathematical Tables may be obtained from the Superintendent.

- 1. Find all the factors of x^4-x^2-240 . By using the method of "completing the square" or otherwise factorize $4x^2+18x-972$.
 - 2. Solve the equations:

(i)
$$x + \sqrt{x} = 56$$
.

(ii)
$$\frac{x^2-1}{x} - \frac{x}{x^2-1} = \frac{5}{6}$$
 (Put $\frac{x^2-1}{x} = y$)

3. Prove that in the quadratic equation $x^2+px+q=0$ the sum of the roots is equal to -p and the product of the roots is equal to q.

Form the quadratic equation whose roots are the cubes of the roots of $x^2-x-3=0$.

- 4. What can be stated about the value of x for which the expression $2x^2-11x+12$ is (i) zero, (ii) positive, (iii) negative? Find also the least value of the expression.
- 5. Prove the formula for the sum of n terms of a Geometrical Progression whose first term is a and common ratio r.

Find the least value of n for which the sum of n terms of the series 1, 3, 3^2 , . . . is greater than 100,000.

- 6. If x-1 and x+2 are factors of $2x^4-x^3+px^2+qx+4$, find the values of p and q and find the remaining factors.
- 7. An Arithmetical Progression consisting of 19 terms has 50 as its middle term: find the sum of the series. If the 14th term is 56, what is the first term?

- 8. A man's income is £200 for the first year and increases each year by £20. His expenditure is £180 for the first year and increases each year by 10% of the expenditure for the previous year. Prove that after 11 years his total expenditure will have exceeded his total income.
- 9. Draw on as large a scale as convenient the graph of $y=(1\cdot 5)^x$ for values of x between 0 and 1.

Use the graph to find the value of $\log_{1.5} 1.2$ and verify by calculation.

10a. Write out the first 4 terms of the expansion of $(1+x)^n$ by the Binomial Theorem.

Evaluate (1.01)10-(.99)10 to 5 decimal places.

Or.

10b. Find the L.C.M. of x^3+6x^2-x-30 and $x^3+3x^2-4x-12$. Show that a-b is a factor of $a^4(b-c)+b^4(c-a)+c^4(a-b)$ and find the other factors,