AN ROINN OIDEACHAIS

(Department of Education).

BRAINSE AN MHEAN-OIDEACHAIS

(Secondary Education Branch).

LEAVING CERTIFICATE EXAMINATION, 1930.

PASS.

MATHEMATICS (I).

FRIDAY, 13th JUNE.-Morning, 10 a.m. to 12.30 p.m.

Seven questions may be answered. 8 (a) or 8 (b) may be answered, but not both. All questions carry equal marks.

Mathematical Tables may be obtained from the Superintendent.

1. Solve the equations:

(a)
$$\frac{2}{1+x} + \frac{3}{1-x} = 5$$
.

Test your solutions in (a).

2. Find, in its simplest form, correct to five significant figures, the value of

$$\sqrt{\left(\frac{1}{7-4\sqrt{3}}\right)} \quad -\sqrt{\left(\frac{1}{5+2\sqrt{6}}\right)}.$$

3. State and prove the Remainder Theorem. Show that $x^n-nx+n-1$ is divisible by $(x-1)^2$, where n is any positive integer greater than unity.

4. Define a logarithm, and from the definition establish that $\log_{aN}^{M} = \log_{a}M - \log_{a}N$.

If $\log_a(p+q-r) = \log_a p + \log_a q - \log_a r$, find the simplest relations between p, q, r.

- 5. Arithmetic Means, whose sum is 132, are inserted between 1 and 21: find the first two of those means.
- 6. A rectangle, of area one square foot, has diagonal, length and breadth in Geometric Progression: find the angle between the diagonal and the longer side.
- 7. A man paying a coal bill observed that $1\frac{1}{2}$ tons less coal would have been obtained for the money had the price been $12\frac{1}{2}\%$ higher, but that $11\frac{1}{6}\%$ more coal would have been obtained if the price had been 4s. per ton lower: what was the amount of the bill?

8 (a) Prove the identity $(a^2+b^2+c^2)(x^2+y^2+z^2) = (ax+by+cz)^2 + (bz-cy)^2 + (cx-az)^2 + (ay-bx)^2.$

Hence show that, if $a^2+b^2+c^2$ and $x^2+y^2+z^2$ have given values, ax+by+cz will have its maximum value when $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}$.

Or

be

ıt,

es,

at

st

8 (b) Show that the coefficient of the middle term of the expansion of $(1+x)^{16}$ is equal to the sum of the coefficients of the eighth and ninth terms of the expansion of $(1+x)^{15}$.

Use the Binomial Theorem to evaluate $\sqrt[5]{40}$ to three places of decimals.

- 9. ABC is a triangle right-angled at C. Through any point P on AB lines PD and PE are drawn parallel to CA and BC respectively, and forming with them the rectangle PDCE. If BC is a units in length, CA b units and PE x units, express the length of PD in terms of a, b, x, calculate the area of PDCE and show that it cannot be greater than \(\frac{1}{4}ab \).
- 10. Plot the graphs of $x = \frac{6}{y} y$ and of $y = 3x \frac{1}{x}$ for values of x lying between -3 and 3, and thus obtain solutions of the equations

$$\begin{cases} xy + y^2 = 6 \\ 3x^2 - xy = 1 \end{cases}$$