AN ROINN OIDEACHAIS

(Department of Education).

BRAINSE AN MHEAN-OIDEACHAIS (Secondary Education Branch).

LEAVING CERTIFICATE EXAMINATION, 1928.

PASS

MATHEMATICS (I).

THURSDAY, 14th JUNE .- MORNING, 10 A.M. TO 12.30 P.M.

Seven questions may be answered. 9 (a) or 9 (b) may be answered, but not both. All questions carry equal marks.

Mathematical Tables may be obtained from the Superintendent.

1. The difference between two numbers is 5 and the excess of their product over their sum is also 5: find the numbers.

Solve also the general case in which k is substituted for 5 in the above.

2. Solve (i)
$$\frac{10x-11}{7x-2} - \frac{14x-16}{17x-7} = 0$$
;

(ii)
$$x (3x-y) = 1,$$

 $y (3x-y) = 2.$

3. Evaluate

$$\frac{x+1+\sqrt{x^2-1}}{x+1-\sqrt{x^2-1}}$$
 when (i) $x=1\cdot 68$, (ii) $x=-1\cdot 68$.

Express as a difference of two surds $\sqrt{19-4\sqrt{21}}$.

4. What is an Arithmetical Progression?

Prove that the series whose nth term is an+b, where a and b are given, is an A. P.

Find the sum of the first 50 terms in the case where a=1 and b=-1.

5. Draw on the same diagram on as large a scale as possible the graphs of $\frac{10x+19}{3}$ and $\frac{3}{x^2}$.

Hence solve the equation $10x^3+19x^2-9=0$, indicating the roots and their method of derivation from the graph.

6. Express 2 (x-y)(x-z) + 2(y-z)(y-x) + 2(z-y)(z-x) as the sum of three squares.

If x, y, z are real what is the simplest relation between x, y and z when the above expression is zero?

7. State and prove the Remainder Theorem and find the factors of x^3+2x^2-5x-6 .

Solve the equation $1-2x-5x^2+6x^3=0$.

8. Prove that $\log_a MN = \log_a M + \log_a N$. Solve the equation $25^{2x} 2^{x+3} = 100$.

9. The figure represents the graph of ax^2+bx+c drawn to the scale of one unit to each small division: find a, b and c.

Or

9. When is a number said to be rational?

By considering the number of factors equal to 2 in the integers m and n, discuss the truth of the equation $2n^2=m^2$.

What is meant by *irrational*? Deduce that $\sqrt{2}$ is irrational. What is a *surd*? Are all irrationals surds?