AN ROINN OIDEACHAIS

LEAVING CERTIFICATE EXAMINATION, 1995

MATHEMATICS—HIGHER LEVEL PAPER 2 (300 marks)

FRIDAY, 9 JUNE — MORNING, 9.30 to 12.00

24472

Schharland

22 APR 1996

Scholand

Line

Attempt five questions from Section A and one question from Section B. Each question carries.

Marks may be lost if necessary work is not shown or if you do not indicate where a calculator has been used.

SECTION A

- 1. (a) Investigate if the point (100, 101) is on the line joining (2, 1) and (3, 2).
 - (b) p(0, -2) and q(-2, -6) are points of a circle centre (k, -2k). Find k and write the equation
 - (c) $x^2 + y^2 + 2x 4y 20 = 0$ is the equation of a circle. Two lines L and M intersect at (2, -2). The distance from the centre of the circle to each line is $2\sqrt{5}$. Find the equation of L and the equation of M.
- 2. (a) If $\vec{c} = 3\vec{i} 2\vec{j}$ and $\vec{d} = 9\vec{i} + 6\vec{j}$, find a unit vector perpendicular to \vec{cd} .
 - (b) (i) opqr is a parallelogram where o is the origin, $\vec{p} = 2\vec{i} 8\vec{j}$ and $\vec{q} = 11\vec{i} + \vec{j}$. Express \vec{r} in terms of \vec{i} and \vec{j} .
 - (ii) $s \in [pq]$ and |ps| : |sq| = 5 : 4. Express \vec{s} in terms of \vec{i} and \vec{j} .

(iii) If $\vec{w} = x\vec{i} - 4\vec{j}$ and $|\vec{ws}| = \sqrt{37}$, find two values for x.

Show that the larger value gives $\overline{ws} \perp rs$.

Show that the smaller value gives an angle of $\cos^{-1}\left(\frac{-12}{37}\right)$ between \overline{ws} and \overline{rs} .

3. (a) Find the equation of the line through the point of intersection of

and
$$3x - 2y + 6 = 0$$

 $3x + 10y - 2 = 0$

and which contains the point $(\frac{1}{a}, 0)$.

(b) f is the transformation $(x, y) \rightarrow (x', y')$ where

$$x' = 3x - y$$

$$y' = x + 2y.$$

For points p(0, 0), q(1, 0) and r(0, 2) find f(p), f(q) and f(r). Investigate if

- (i) |qr| = |f(q)f(r)|.
- (ii) the area of the triangle pqr is equal to the area of the triangle f(p) f(q) f(r).
- (c) L is a line with equation ax + by + c = 0. Prove that the image f(L) is also a line, where f is the transformation which is given in (b).

M is a line with equation ax + by + d = 0. Deduce the equation of f(M). Show $f(L) \parallel f(M)$.

- 4. (a) Evaluate $\lim_{x \to 0} \left\{ \frac{\sin 5x}{x} + \frac{\sin 3x}{x} \right\}.$
 - (b) When $\sin \alpha = \frac{5}{13}$ and $\cos \beta = \frac{4}{5}$, α and β less than 90°, express $\sin (\alpha + \beta)$ in the form $\frac{a}{b}$ where $a, b \in Q$.

Hence, or otherwise, show

$$\cos (45 - \alpha - \beta) = \frac{89\sqrt{2}}{130}.$$

- (c) p, q and r are points on level ground. [sr] is a vertical tower of height h. The angles of elevation of the top of the tower from p and q are α and β , respectively.
 - (i) If $|\alpha| = 60^{\circ}$ and $|\beta| = 30^{\circ}$, express |pr| and |qr| in terms of h.
 - (ii) Find |qp| in terms of h, if $\tan \angle qrp = \sqrt{8}$.

- 5. (a) Show that $\cos 2\theta = 2 \cos^2 \theta 1$.
 - (b) Find the values of θ , $0 \le \theta \le 2\pi$, if $4\cos^2\theta 3\sin\theta 3 = 0$.
 - (c) (i) Prove that $\tan 2A = \frac{2\tan A}{1 \tan^2 A}$.
 - (ii) A triangle is inscribed in a sector of a circle, centre c, radius r, $\theta < 90^{\circ}$. A right-angled triangle circumscribes the sector (see diagram).

If the area of a sector is $\frac{1}{2}r^2\theta$ [Tables p. 7] prove $\sin \theta < \theta < \tan \theta$.

6. (a) Five points are marked on a plane. No three of them are collinear. How many different triangles

Two of the five points are labelled x and y respectively. How many of the above triangles h_{aye} [xy] as a side?

- (b) (i) A bag contained 8 red, 12 blue and an unknown number of green beads. In a random d_{Ta} the probability of drawing a green bead was $\frac{1}{5}$. How many green beads were in the bag at the start?
 - (ii) In how many ways can the letters of the word METCALF be arranged if M is always at the beginning and A and E are always side by side?
- (c) Find $\sigma(x)$, the standard deviation of 0, x, 1.

Show that $\sigma(x) = \sigma(1 - x)$ for all $x \in \mathbb{R}$.

Show that in $0 \le x \le 1$, the minimum value of $\sigma(x)$ is $\frac{1}{\sqrt{6}}$.

7. (a) The weighted mean of the data below is IR£0.90.

Item	A	В	С	D	Е
Price in IR£	1.40	0.80	0.30	3.50	0.50
Weight	3	5	x	1	3

Find the value of x.

(b) Solve the difference equation

$$u_{n+1} - 2u_n - 53u_{n-1} = 0, n \ge 1$$

when $u_0 = 0$ and $u_1 = 6$.

- (c) Nine discs were each given a natural number from two to ten inclusive, each number different from the others. All nine were placed in a box.
 - A disc was picked at random and replaced. A disc was then picked. Find the probability that both discs showed prime numbers.
 - (ii) Three discs were picked at random. What was the probability that three odd numbered discs or three even numbered discs were picked?

SECTION B

Do ONE question

8. (a)
$$f(x) = f(0) + \frac{f'(0) x}{1!} + \frac{f''(0) x^2}{2!} + \frac{f'''(0) x^3}{3!} + \dots$$
 is the Maclaurin series.

Write the Maclaurin series for $f(x) = e^x$ up to the term containing x^4 . Hence find an approximation for e correct to four decimal places.

(b) Evaluate
$$\int_{0}^{e} x \ln x \, dx$$
.

(c) A right circular cone 11 cm in height and of base diameter 8 cm is to enclose a cylinder (see two dimensional diagram).

Express the height (h) of the cylinder in terms of its radius (r).

Find the maximum volume of the cylinder in terms of π .

- 9. (a) There were 9 white marbles in a bag. In a second bag there were 7 white and 2 black marbles. If a bag and then a marble were a bag. In a second bag there were 7 white and 2 black marble? a bag and then a marble were selected at random what was the probability of a black marble?
 - (b) There were 100 discs in a bag each having one of the one hundred natural numbers from 1 to 100 printed on it. There were 100 discs in a bag each having one of the one hundred natural numbers were red. The rest 100 printed on it. There was a different number on each disc. Forty numbers were red. The rest
 - were black. Twenty-six of the black numbers were even.
 - (i) How many discs had even red numbers? (ii) If a disc were selected at random what was the probability that its number was odd given that it was red? that it was red?
 - (iii) A disc was drawn and replaced. Then a disc was drawn. Find the probability that the first had a red number given that had a red number given that it was odd and that the second had an odd number given that it was black.
 - (c) A novelty shop advertised a biased (trick) die which would not give the expected number of fours as would a fair die If the die which would not give the 5% level of significance, as would a fair die. If the die gave 59 fours in 500 rolls, investigate at the 5% level of significance, whether or not the die was in 500 rolls, investigate at the 5% level of significance, whether or not the die was indeed biased.
- 10. (a) (i) Complete the table shown so that it will be the Cayley Table of a group. Give a reason for your answer.

- (b) In a group G, * with identity e, prove
 - (i) $e^{-1} = e$.
 - (ii) $(a^{-1})^{-1} = a$ in all cases.
 - (iii) $(ab)^{-1} = b^{-1} a^{-1}$ in all cases.
- (c) The group S, o may be represented by the following table:

0	σ_0	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	0
					σ_4	σ_5	σ_6	σ
σ_{0}	$\sigma_{\!\scriptscriptstyle 0}$	σ_{1}	σ_2	σ_3		σ_6	σ_7	σ_{z}
$\sigma_{\rm l}$	$\sigma_{\rm l}$	σ_2	σ_3	$\sigma_{\!\scriptscriptstyle 0}$	σ_5	σ_7	σ_{4}	σ_{ϵ}
σ_2	σ_2	σ_3	$\sigma_{\!\scriptscriptstyle 0}$	$\sigma_{ m l}$	σ_6		σ_{ς}	σ_{ϵ}
σ_3	σ_3	σ_0	$\sigma_{\rm I}$	σ_2	σ_7	σ_4	3	σ_1
σ_4	σ_4	σ_7	σ_6	σ_5	σ_{0}	σ_3	σ_2	σ_2
σ_5	σ_5	$\sigma_{\!\scriptscriptstyle 4}$	σ_7	σ_6	σ_1	σ_0	σ_3	
σ_6	σ_6	σ_{5}	σ_4	σ_7	σ_2	σ_1	$\sigma_{\!\scriptscriptstyle 0}$	σ_3
σ_7	σ_{7}	σ_6	σ_5	$\sigma_{\!\scriptscriptstyle 4}$	σ_3	σ_2	σ_{1}	σ_0

- (i) Show that S, o is non-commutative.
- (ii) Find the order of σ_1 and list the elements in subgroup $\langle \sigma_1 \rangle$, \circ
- (iii) Let C be the set of all elements which commute with σ_4 . Show that $\langle \sigma_1 \rangle$, \circ is not isomorphic to C, \circ
- (iv) Solve for $k : \sigma_4 \sigma_k \sigma_5 = \sigma_6$.

- 11. (a) Find the equation of the ellipse with foci $\left(\frac{-4}{3}, 0\right)$ and $\left(\frac{4}{3}, 0\right)$ and with eccentricity $\frac{4}{5}$.
 - (b) (i) L and M are perpendicular lines and f is a similarity transformation. Prove $f(L) \perp f(M)$.
 - (ii) Prove that the circumcentre of a triangle is mapped onto the circumcentre of the image triangle under a similarity transformation.
 - (c) (i) Show that the ratio of the areas of two triangles is an invariant under every affine transformation.
 - (ii) Show that for an ellipse E, the parallelogram formed by tangents at the end points of a pair of conjugate diameters has constant area.