LEAVING CERTIFICATE EXAMINATION, 1994

MATHEMATICS - HIGHER LEVEL - PAPER I (300 marks) 21788

THURSDAY, 9 JUNE - MORNING, 9-30 to 12-00

Attempt SIX QUESTIONS (50 marks each)

Marks may be lost if all your work is not clearly shown or if you do not indicate where a calculator has been used.

$$2x - 1 = \sqrt{8x + 1} \ .$$

$$3x + 5y - z = -3$$

$$2x + y - 3z = -9$$

$$x + 3y + 2z = 7$$

(c)
$$x^2 + ax + b$$
 is a factor of the polynomial $x^3 + qx^2 + rx + s$.
Prove that $r - b = a(q - a)$ and $s = b(q - a)$.

2. (a) Solve the simultaneous equations

$$y = x - 3$$
$$x^2 - 3y^2 = 13$$

(b) The roots of the equation $2x^2 + 6x + 3 = 0$ are α and β .

Show that
$$\alpha^2 + \beta^2 = 6$$
.

The roots of $2x^2 + px + q = 0$ are $2\alpha + \beta$ and $\alpha + 2\beta$. Find the value of p and the value of q.

(c) If for all integers n,

$$u_n = (n - 20) 2^n$$
,

verify that

$$u_{n+2} - 4u_{n+1} + 4u_n = 0.$$

For what values of n > 0 is $u_{n+1} > 3u_n$?

3. (a) If the matrix
$$M = \begin{bmatrix} 3 & -1 \\ 4 & -2 \end{bmatrix}$$
, find $M^2 - 3M$.

(b) Express in the form p + iq, where $p, q \in \mathbb{R}$ and $i^2 = -1$,

$$(i) \qquad \frac{5-2i}{4+3i}$$

(ii)
$$\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^5$$

(c) Determine real numbers s and t so that

$$(s + it)^2 = -3 + 4i$$
.

Hence determine the two roots of the equation

$$z^2 - (4 - 2i)z + 6 - 8i = 0.$$

4. (a) Find the sum of the infinite geometric series

$$1 + \frac{3}{2x + 1} + \left(\frac{3}{2x + 1}\right)^2 + \bullet \bullet \bullet + \left(\frac{3}{2x + 1}\right)^{n-1} + \bullet \bullet \bullet$$
, where $x > 1$.

- (b) The sum of the first n terms of the series $u_1 + u_2 + u_3 + \cdots + u_n$ is given by n (n 1).
 - (i) Express u_n in terms of n.
 - (ii) If u_{n} , u_{n+1} , u_{n+2} and u_{n+3} are four terms of the series, calculate the value of

$$(u_{n+3}^2 - u_{n+1}^2) - (u_{n+2}^2 - u_n^2).$$

(c) Show that

$$(ax + by)^2 \le (a^2 + b^2)(x^2 + y^2)$$

for all $a, b, x, y \in \mathbb{R}$.

5. (a) Solve the equation

$$\log_{10} (17 - 3x) + \log_{10} x = 1$$

(b) Using mathematical induction show that

$$2^{3n-1} + 3$$

is divisible by 7 for all $n \in \mathbb{N}_0$.

(c) If
$$f(x) = \sum_{n=1}^{\infty} nx^{n-1}$$
, for $-1 < x < 1$,

show that

$$x f(x) = \sum_{r=2}^{\infty} rx^{r-1} - \sum_{r=2}^{\infty} x^{r-1}$$

Hence, find the value of f(x).

6. (a) Find the derivative of the functions

(i)
$$\frac{x^2-1}{x^2+1}$$

(ii)
$$\sqrt{1+3x}$$

- (b) (i) Find the derivative of $\sin^{-1} 3x$.
 - (ii) Let x + y = 12, where x, y > 0.

If $A = x^2 + y^2 + 3xy$, write A as a quadratic in x.

Calculate the maximum value of A.

(c) Let
$$f(x) = \frac{x}{x-3}$$
, $x \neq 3$ and $x \in \mathbb{R}$.

- (i) Show that the curve f(x) has no points of inflection.
- (ii) Find the equations of the asymptotes of the curve f(x).
- (iii) Draw a sketch of the curve f(x).
- (iv) Find how x_1 and x_2 are related if the tangents at $(x_1, f(x_1))$ and $(x_2, f(x_2))$ are parallel.

- (a) Differentiate from first principles $\frac{1}{x}$ with respect to x.
- (b) (i) Find the derivative of $\log_e (1 + \tan x)$.
 - (ii) The path of a football is given by the equation

$$y = x - \frac{x^2}{40}, \quad x \ge 0.$$

- If $\frac{dx}{dt} = 10\sqrt{2}$ for all t, find $\frac{dy}{dt}$ when x = 10.
- (c) Given that $x = e^{\theta} \cos \theta$ and $y = e^{\theta} \sin \theta$, where $\frac{-3\pi}{4} < \theta < \frac{\pi}{4}$, show that

(i)
$$\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 = 2e^{2\theta}$$

(ii)
$$\frac{dy}{dx} = \tan \left(\theta + \frac{\pi}{4}\right)$$

Note: See Tables, p. 9.

8.

(a) Find
$$\int (4x - 3)dx$$
 and $\int \sin 3x dx$.

- (b) Find the area of the bounded region enclosed by the curve $y = \frac{2x}{x^2 + 1}$, the x axis, the line x = 1 and the line $x = 2\sqrt{2}$.
- (c) (i) Evaluate

$$\int_{0}^{1} \frac{x^{2} - 16}{2x + 8} dx \quad \text{or} \quad \int_{0}^{\frac{1}{3}} \frac{1}{1 + 9x^{2}} dx.$$

(ii) If a > 0 and

$$\int_{0}^{b} \frac{1}{1+x} dx = \frac{1}{2} \int_{0}^{a} \frac{1}{1+x} dx,$$