W

OR

LEAVING CERTIFICATE EXAMINATION, 1992

MATHEMATICS - HIGHER LEVEL - PAPER I (300 marks)

THURSDAY, 11 JUNE - MORNING, 9-30 to 12-00

14514

Attempt QUESTION 1 (100 marks) and FOUR other questions (50 marks each)

Marks may be lost if all your work is not clearly shown or if you do not indicate where a calculator has been used.

(i) Let $f(x) = \left(\frac{1+x+x^2}{1-x+x^2}\right)$. Form a new function g(x) by replacing xin f(x) by -x. Show that $g(x) = \frac{1}{f(x)}$.

(ii) Evaluate at $x = \frac{\pi}{6}$

$$\lim_{h\to 0} \frac{\cos(x+h) - \cos x}{h} - \frac{1}{2}$$

Let $\frac{\sqrt{2} (\cos \theta - i \sin \theta)}{2 + i} = \frac{1 - 3i}{5}$, where $i = \sqrt{-1}$. Show that $\cos \theta - i \sin \theta = \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}}$.

Hence find θ where $0 \le \theta \le \frac{\pi}{2}$

Using the substitution $u = \sin^{-1} \frac{x}{2}$, or otherwise, evaluate

$$\frac{1}{\pi^2} \int_{-\pi}^{1} \frac{\sin^{-1} \frac{x}{2}}{\sqrt{4 - x^2}} dx$$

Find the area of the bounded region enclosed by the curve $y^2 = x$ and the line x = 9.

Let a_n be the *n* th term of a sequence and $a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a} \right)$, where $a_1 > 0$.

If $\lim_{n\to\infty} a_n = L$, write down $\lim_{n\to\infty} a_{n+1}$ Hence find L.

36

(vii) Let $f(x) = \frac{1}{2} (e^x - e^{-x})$ and $f'(x) = \frac{d}{dx} f(x)$. Find values for e^x which satisfy 5 f'(x) + f(x)

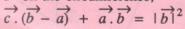
Let
$$f(x) = \frac{1}{2} (e^x - e^{-x})$$
 and $f'(x) = \frac{d}{dx} f(x)$.
Find values for e^x which satisfy $5 f'(x) + f(x) = 7$.
$$e^{-x} = \frac{7 \pm \sqrt{73}}{2}$$

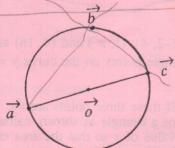
(viii) Show $\frac{1}{\sqrt{n+1} + \sqrt{n}} = \sqrt{n+1} - \sqrt{n}$.

If
$$u_n = \frac{1}{\sqrt{n+1} + \sqrt{n}}$$
, evaluate $\sum_{n=1}^{15} u_n$.

Show clearly that $f(x) = \sin x - x \cos x$ is an increasing function in the domain

(x) A circle with centre o as origin has a diameter with end points a and c. Using the fact that the angle in a semicircle is a right angle, show that for any point \overrightarrow{b} on the circumference, $\overrightarrow{c} \cdot (\overrightarrow{b} - \overrightarrow{a}) + \overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{b}|^2$.





A drawer contains 5 red markers and n blue markers. One marker is drawn at random and not replaced. Another marker is then drawn at random. If the probability that both markers are blue is 1/6, how many blue markers were in the drawer?

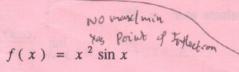
$$\frac{n}{n+5} \times \frac{n-1}{n+4} = \frac{1}{6} \qquad \frac{h^2 - n}{n^2 + 4n + 20} = \frac{1}{6} \qquad \frac{h^2 + 4n + 20}{6} = \frac{6n^2 - 6n}{6} \qquad \frac{(n+1)(n-1)}{6} = \frac{1}{6} \qquad \frac{h^2 + 4n + 20}{6} = \frac{1}{6} \qquad \frac{h^2 + 4n + 20}{6} = \frac{1}{6} \qquad \frac{(n+1)(n-1)}{6} = \frac{1}{6} \qquad \frac{h^2 + 4n + 20}{6} = \frac{1}{6} \qquad \frac{h^2 + 4n + 20}$$

- (a) Determine the real numbers p and q so that $(p + iq)^2 = 5 + 12i$,
- (b) If $z = \frac{1 + i \tan \theta}{1 i \tan \theta}$, show that |z| = 1.
- (c) Let $K = \{z \mid x^2 + y^2 = 1\}$, where z = x + iy, $x, y \in \mathbb{R}$.

On an Argand diagram in the w-plane plot f(K), the image of K, under the $\ell = (0, 6)$ transformation

$$w = f(z) = 2i(z + 3).$$

(a) Investigate if the function



10 min

has a local maximum, a local minimum or a point of inflection at x = 0.

(b) Let $u_n = ar^{n-1}$, where $r \ne 1$ and $S_n = u_1 + u_2 + u_3 + ... + u_n$.

Find in terms of a, r and n

 $\frac{a(1-t^n)}{1-t}$

(a) Find the value of the derivative of the function

(i)
$$\left(x + \frac{1}{x}\right)^2$$
 at $x = 2$.

(ii) $x 4^x$ at x = 1 4 by 4 + 4

(b) Let $x = a (\theta - \sin \theta)$ and $y = a (1 - \cos \theta)$, where $a \neq 0$ and $-\pi < \theta < \pi$.

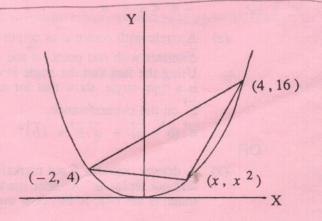
Show that

$$\frac{dy}{dx} = \cot \frac{\theta}{2}$$
.

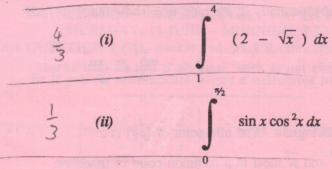
- m= 33
- (c) A tangent line is drawn to the curve $y = \sin^{-1} x$ at the point $\left(\frac{1}{2}, \frac{\pi}{6}\right)$.
- (d) If $x^3 + y^3 = 3xy$, find $\frac{dy}{dx}$ at the point $\left(\frac{3}{2}, \frac{3}{2}\right)$.

 $(-2, 4), (x, x^2)$ and (4, 16) are three points on the curve $y = x^2$.

If these three points are the vertices of a triangle as shown, calculate the value of x so that the area enclosed by the triangle is a maximum.



Evaluate



7 min

$$\int_{3}^{4} \frac{2x - 6}{x^{2} - 6x + 10} dx$$

$$\frac{1}{e+1} \int_{0}^{1} \frac{e^{-x}}{(1 + e^{-x})^{2}} dx.$$

M= 1+e-x du=ex Sitteman.

(a) Let $u_n = \frac{(n+1)(n+2)}{(n+3)(n+4)}$

Determine whether

v-2

- (i) as $n \to \infty$, the sequence u_1 , u_2 , ..., u_n , ... converges $||u_1|| ||u_2|| ||u_n||$
 - u converges.

(b) Use the Comparison test to verify that the series

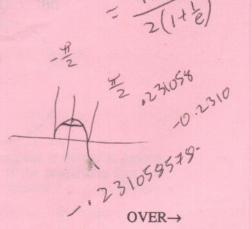
$$\sum_{n=1}^{\infty} \frac{\sqrt{n-1}}{n^2+4n}$$

converges.

(c) Find the values of $\alpha \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ for which the series $-\frac{\pi}{3} < \alpha < \frac{\pi}{3}$

$$\sum_{n=1}^{\infty} \frac{\sec^n \alpha}{2^n (n+1)}$$

converges.



8.

(a) If r divides [ab] internally in the ratio m:n, show that

$$\overrightarrow{r} = \frac{\overrightarrow{mb} + \overrightarrow{na}}{\overrightarrow{m} + n}.$$

pqrs is a parallelogram. The mid-point of [pq] is c.

Verify that \overrightarrow{pr} and \overrightarrow{sc} meet in a common point of trisection.

(b) r_1 is a point of the line ab and

$$\overrightarrow{r}_1 = \overrightarrow{a} + t (\overrightarrow{b} - \overrightarrow{a}), t \in \mathbb{R}.$$

Find
$$\overrightarrow{r_1}$$
 if $\overrightarrow{a} = 4\overrightarrow{i} + 3\overrightarrow{j}$ and $\overrightarrow{b} = 8\overrightarrow{i} + \overrightarrow{j}$.

 r_2 is a point of the line pq and

$$\overrightarrow{r_2} = 3\overrightarrow{i} + 5\overrightarrow{j} + k(\overrightarrow{i} + \overrightarrow{j}), k \in \mathbb{R}.$$

- (i) Calculate the cosine of the angle between ab and pq.
- (ii) Find \overrightarrow{s} , where s is the point $ab \cap pq$.

OR

8.

Hens' eggs have masses which may be said to have a normal distribution about a mean mass of 60 g and a standard deviation of 15 g.

Eggs of mass less than 45 g are classified as small.

The remainder are classified into two further divisions called standard and large.

- (i) If an egg is picked at random from a batch, find the probability that it is small.
- (ii) It is desired that the standard and large classes should have about the same number of eggs in each.

Estimate the mass at which this division should be made.