LEAVING CERTIFICATE EXAMINATION, 1989

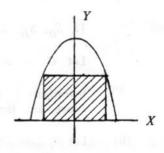
MATHEMATICS - HIGHER LEVEL - PAPER II (300 marks)

FRIDAY, 9 JUNE - MORNING, 9.30 to 12.00

Attempt QUESTION 1 (100 marks) and FOUR other questions (50 marks each)

Marks may be lost if all your work is not clearly shown
or if you have not indicated where a calculator has been used

- 1. (i) Differentiate the function $x \to \cos(3x^2 \pi)$ and find the value of the derivative at $x = \sqrt{\pi}$.
 - (ii) Express $\frac{1 + i \tan \theta}{1 i \tan \theta}$ in the form $\cos k \theta + i \sin k \theta$, $k \in \mathbb{R}$.
 - (iii) Let $f(x) = \frac{x}{x+1}$ for $x \neq -1$. If k > 0 and h > 0, show that f(k + h) > f(h).
 - (iv) A rectangle has its base on the X axis and its other vertices on the curve $y = 6 x^2$ as in the diagram. Find the maximum and the minimum area of the rectangle.



- (v) Show that for all x in the range 0 < x < 1 $\sin^{-1} x + \cos^{-1} x$ is a constant.
- (vi) Find the volume of the solid obtained, by rotating the curve $y = \frac{1}{\sqrt{x}} + \sqrt{x}$ about the X axis between the lines x = 1 and x = 9.

(vii) The sequence
$$u_1$$
, u_2 , u_3 , ... is such that
$$u_1 = 1, \quad u_3 = 3, \quad u_{2n} = u_n$$

$$u_{4n+1} = 2u_{2n+1} - u_n$$

$$u_{4n+3} = 3u_{2n+1} - 2u_n$$
Evaluate u_2 .

(viii) If
$$\sum_{n=1}^{\infty} u_n$$
 is a convergent series of positive terms, show that
$$\sum_{n=1}^{\infty} \frac{u_n}{1+u_n}$$
 is also a convergent series.

(ix) Find the maximum value of x in the interval $0 < x < \frac{\pi}{2}$ for which

(ix) Find the maximum value of
$$x$$
 in the interval $0 < x < \frac{\pi}{2}$ for which
$$[1 + \cos^2 x + \cos^4 x + \dots + \cos^2 (n-1)x + \dots] \ge 2.$$
(x) Find the length of the orthogonal projection of $2\vec{i} + 3\vec{j}$ on $12\vec{i} + 5\vec{j}$.

(x)
$$n$$
 unbiased coins are tossed. Show that the probability of getting n heads or $(n-1)$ heads is

2. (a) Let
$$z = x + iy$$
 where $x, y \in \mathbb{R}$. Show on an Argand diagram in the z-plane the set H of z for which $|(z-1)| + 4i| \le 1$. On an Argand diagram in the w -plane $f(H)$, the image of H , under the transformation

$$w = f(z) = k(1 - z), k \in \mathbb{R}$$
 is the circle $|w - i| \le \frac{1}{4}$. Find the value of k .

(b) If
$$z^2 = \cos 2\alpha + i \sin 2\alpha$$
 where $i = \sqrt{-1}$ show that $z = \cos (n\pi + \alpha) + i \sin (n\pi + \alpha)$, for $n = 0$ or 1.
Let $z = \sqrt{2 - \sqrt{3}} - i \sqrt{2 + \sqrt{3}}$.
Express z^2 in the form $r(\cos \theta + i \sin \theta)$ and deduce that

$$\frac{12}{12} \cdot \frac{2}{5} \cdot \frac{3}{5} \cdot \frac{10}{12} = \frac{1}{2} \cdot \frac{1}{2} \cdot$$

The diagram shows three circles touching two non-parallel lines and the middle circle touching the other two. The radii of the circles are of lengths x, y, z. Show, using similar triangles, or otherwise, that x, y, z are in geometric sequence.

OR

3.

$$\log_e \frac{1 + \sin x}{1 - \sin x}$$

is $k \sec x$. Find the value of k.

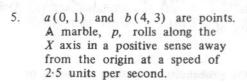
$$2^x \sin^{-1}(2x)$$

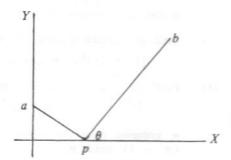
at
$$x = 0$$
.

(c) Find the equation of the tangent to the curve

$$x = \frac{1}{2} \left(1 - e^{-t} \right), \quad y = 2t + e^{t}, \quad t \in \mathbb{R}$$

at the point on the curve where x = 0.





At any instant the line bp makes an angle θ with the positive sense of the X axis. When p is at (x, 0), 0 < x < 4, show that $\tan \theta = \frac{3}{4 - 3}$.

Find the rate at which θ , measured in radians, is increasing when the marble reaches the point (3, 0).

Find also the rate of change of |Lapb| at that point.

6. (a) Evaluate
$$\int_0^1 x(1 + x^2)^5 dx$$
.

(b) Evaluate
$$\int_{0}^{\frac{\pi}{6}} \cos 2x \sin 4x \ dx$$

(c) Evaluate
$$\int_{-2}^{0} \frac{dx}{\sqrt{(5+x)(1-x)}}$$

$$\frac{u^2-1}{2u-1} = \frac{1}{2}u + \frac{1}{4} - \frac{3}{4(2u-1)}$$

and hence, or otherwise, evaluate

$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\cos^3 x \, dx}{1 - 2\sin x}$$

7. (a) If
$$\frac{1}{(2n-1)(2n+1)} = \frac{a}{2n-1} + \frac{b}{2n+1}$$

for all $n \in \mathbb{N}$, find the value of a and the value of b and hence prove that

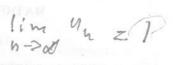
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \frac{1}{2}.$$

(b) Verify that the sequence

$$0, \frac{3}{5}, \frac{8}{10}, \ldots, \frac{n^2-1}{n^2+1}, \ldots$$

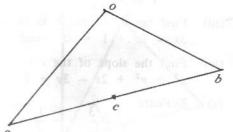
converges to 1 and test for convergence the series

$$0 + \frac{3}{5} + \frac{8}{10} + \ldots + \frac{n^2 - 1}{n^2 + 1} + \ldots$$



(c) Find the range of values of x > 0 for which the series

$$\sum_{n=1}^{\infty} \frac{n^2 - 1}{n^2 + 1} x^n$$
converges.



8. (a) In the $\triangle oab$,

c is the midpoint of [ab].

Taking the point o as origin a

express
$$\vec{c}$$
 in terms of \vec{a} and \vec{b} and hence, or otherwise, show that $|\vec{a}|^2 + |\vec{b}|^2 = 2 |\vec{a}\vec{c}|^2 + 2 |\vec{c}|^2$.

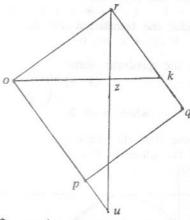
(b) opqr is a square and k is a point such that

$$|rk|: |kq| = 2:1.$$

z is a point in [ok] such that

$$|oz|: |zk| = 2:1$$
, also.

The line rz, produced, meets the line op, produced, at u.



Taking the point o as origin express \vec{k} and \vec{z} terms of \vec{p} and \vec{r} .

If $\overrightarrow{ru} = t\overrightarrow{rz}$, $t \in \mathbb{R}$, express \overrightarrow{u} in terms of \overrightarrow{r} and \overrightarrow{p} and t and hence find the value of t.

Deduce that $|\vec{pu}| = |\vec{kq}|$ and hence express the area of kpuq in terms of $|\vec{r}|$.

OR

8. Use your Tables, page 36, to find the least value of k for which

probability
$$(z \ge k) \le 0.05$$
.

A person Q claims he can guess what another person H is thinking. To test this claim H thinks of a colour and Q guesses what the colour is. An experiment consists of repeating this 20 times and results in Q being correct 14 times.

State the null hypothesis for this experiment.

On the basis of your null hypothesis find the probability that Q can guess correctly at least 14 times out of 20.

Does the result of the experiment show sufficient evidence for Q to claim, at the 5% level of significance, that he can guess what H is thinking ?