LEAVING CERTIFICATE EXAMINATION, 1988

MATHEMATICS - HIGHER LEVEL - PAPER I (300 marks)

Attempt QUESTION 1 (100 marks) and FOUR other questions (50 marks each)

Marks may be lost if all your work is not clearly shown or if you have not indicated where a calculator has been used

- 1. (i) Investigate if the points (99, 35) and (0, 0) are on the same side of the line 5x 13y 37 = 0.
 - (ii) Investigate if the lines represented by $x^2 y^2 x y = 0$ are perpendicular to each other.
 - are perpendicular to each other. (x+y)(x-y) (x+y) = 0(iii) Solve $\log_4 (6x+1) 2 = 2\log_4 x . \qquad (x+y)(x-y-1) = 0$

 - (v) If $a, b \in \mathbb{R}$ and a > 0, b > 0, prove $\left(\frac{1}{a} + \frac{1}{b}\right)\left(a + b\right) \ge 4.$ $1 + \frac{a}{b} + \frac{b}{a} + 1 > 4$ $a^2 + b$ $a^2 2ab$
 - (vi) Find the range of values of x for which $\frac{2x-1}{x-3} < \frac{2}{3} \text{ for } x \in \mathbb{R} \text{ and } x \neq 3. \quad \frac{a^2+b^2}{ab} \neq 2.$
 - (vii) $\begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ -\frac{2}{3} & \frac{1}{3} \end{pmatrix}$ represents a parallel projection of the plane onto a line A which contains the origin. Find the slope of A.
 - (viii) Sketch the graph of the function $\theta \to (1 + \tan^2 \theta) (1 \sin^2 \theta)$ where the domain $0 \le \theta < \frac{\pi}{2}$ for $\theta \in \mathbb{R}$.

1

a3 = a2 bt ab

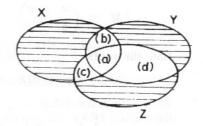
Investigate if there is a solution of

 $\cos^3 x + \sin^3 x = 0$ for $0 \le x \le \frac{\pi}{2}$.

 $\{1, k, 11, 5\}$, mod 12, is a group under multiplication. Find k. (x)

OR

- Write down the equation of the axis of symmetry of the parabola $x = 4t + 1, y = 4t^2 + 1, t \in \mathbb{R}$
- 2. Find, correct to one decimal place, the least positive root of the equation (a) $3(t-1)^3 + 16(t-1)^2 - 7(t-1) - 10 = 0$.
 - (b) X, Y, Z are three sets and the hatching indicates some empty subsets. a, b, c, d indicate the number of elements in the respective subsets. If #(X) = 2, #(Y) = 3 and #(Z) = 4, prove that $a \neq 0$ and evaluate a, b, c, d.



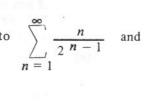
3. (a) Show by induction that

$$7^{2n+1} + 1$$

is divisible by 8 for all $n \in \mathbb{N}$.

Write out in ascending powers of x the first four terms of the expansion of (b) $(1 - 2x)^{-2}$ for $|x| < \frac{1}{2}$.

Find the value of x which makes the expansion equivalent to $\sum_{n=0}^{\infty} \frac{n}{2^{n}-1}$ and hence evaluate $\sum_{n=0}^{\infty} \frac{n}{2^{n}-1}$



L = 0 and K = 0 are the equations of two intersecting lines. Prove that 4. $\mu L + \lambda K = 0$ (μ , $\lambda \in \mathbb{R}$ where μ , λ are not both zero.)

is the equation of a line containing the point of intersection of L=0 and K=0.

Find the equations of the two lines which contain the point of intersection of the two lines

$$P: x - y + 7 = 0$$

$$Q: 4x + 5y - 3 = 0$$

and which cut the axes at equal distances from the origin.

One of these lines together with P and the Xaxis form a triangle T. Investigate if T has an axis of symmetry.

(a) p(4, 2) is a point of the circle $x^2 + y^2 = 5x$. If [pq] is a diameter of the circle, find the coordinates of q.

r and s are two points of the X axis such that

area of
$$\triangle rpq$$
 = area of $\triangle spq$ = area of circle.

Express |rs| in terms of π .

(b) p and q are the centres of two circles

$$S_1$$
: $x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$
 S_2 : $x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0$

which cut at t, as in diagram, and where $pt \perp qt$.

Prove that

$$2g_1g_2 + 2f_1f_2 = c_1 + c_2.$$

In particular let

$$S_1: x^2 + y^2 + 2x - 3y - 4 = 0$$

and

$$S_2$$
: $x^2 + y^2 + 2gx + 2fy + g = 0$.

If the radius of S_2 is of length 3, find all the values of g and f.

6. (a) Given that

$$M = \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 16 & -2 \end{pmatrix}$$

find the roots λ_1 , λ_2 of the equation

$$\lambda^2 - (a+d)\lambda + ad - bc = 0.$$

Hence, find the values of k_1 and k_2 such that

$$M\begin{pmatrix} 1 \\ k_1 \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ k_1 \end{pmatrix}$$
 and $M\begin{pmatrix} 1 \\ k_2 \end{pmatrix} = \lambda_2 \begin{pmatrix} 1 \\ k_2 \end{pmatrix}$.

If $B = \begin{pmatrix} 1 & 1 \\ k_1 & k_2 \end{pmatrix}$, show that $B^{-1}MB = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$.

- (b) Find the matrix of f, the rotation of the plane about the origin, which maps the X axis onto the line 3x 4y = 0. Find the equation of the image of the line 4x + 3y 5 = 0 under f.
- 7. (a) Solve

$$(1 - \tan\theta)(1 + \sin 2\theta) = (1 + \tan\theta)$$

for $0 \le \theta \le \pi$.

(b) Let f be the function

$$\theta \rightarrow 3 - 2\sin\frac{1}{2}\theta, \quad \theta \in \mathbb{R}$$

Verify that 2π is not the period of f:

Use $\theta = 0$ in $f(\theta + l) = f(\theta)$ to find the period l, of f.

Calculate the maximum and minimum values of f in $0 \le \theta \le 1$ and draw a rough sketch of f in the domain $0 \le \theta \le 10\pi$, using $\theta = 0$, π , 2π , 3π , ... 10π .

8. (a) $\{1, a, b, c\}$ is a group G under multiplication.

If $1 = a^2 = b^2 = c^2$, show that $ab \neq b$ and fill in the Cayley table for this group giving a reason for each entry.

Solve for x the equation

$$x^3 abc = b$$

(b) $\{1, i, -1, -i\}$ is a group C under multiplication where $i = \sqrt{-1}$.

Let f be an isomorphism which maps a subgroup of C onto a subgroup of G n (a) above.

Define all possible f.

Is there an f which maps $C \rightarrow G$? Explain your answer.

OR

Show that the equation of the parabola, S, which is the image of the parabola 8. $y^2 = 4x$. On the large of the large of the solar declaration and the solar declaration of th

$$y^2 = 4x$$

under the axial symmetry in the line

$$= 2x$$

y = 2x and said with the decide as decodes and (x)can be written in the form

$$(ax + by)^2 + k(bx - ay) = 0.$$

Find the equation of the axis of S and the equation of the tangent to S at its vertex.