MATHEMATICS - HIGHER LEVEL - PAPER II (300 marks)

Attempt QUESTION 1 (100 marks) and FOUR other questions (50 marks each)

Marks may be lost if all your work is not clearly shown or if you have not indicated where a calculator has been used

- 1. (i) Prove that when a positive real number is added to its reciprocal the sum is greater than or equal to 2.
 - (ii) Find the complex number z such that

$$z\left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right) = 1.$$

(iii)) Differentiate from first principles the function

$$x \rightarrow \frac{1}{1+x^2}$$

(iv) Find the local minimum of the function

$$x \to x + \frac{4}{x^2} , \quad x > 0$$

and draw a rough graph of the function.

(v) Verify that the point $(1, \sqrt{3})$ is common to the circles

$$x^2 + y^2 = 4$$
 and $(x - 2)^2 + y^2 = 4$

and find the volume generated by rotating the region common to both circles about the X axis.

(vi) Express in terms of x

$$\sum_{n=0}^{\infty} \left(\frac{x}{x+1} \right)^n \text{ for } x > 0.$$

(vii) The sequence

$$u_1, u_2, u_3, \ldots, u_n, \ldots$$

is such that

$$u_1 = 1$$

$$u_{n+1} = \frac{u_n}{2} + \frac{1}{u_n}$$
 for $n \ge 1$.

If the sequence converges to k, find k.

(viii) Test for convergence the series

$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{n^3 + 1}$$

(ix) Evaluate

$$\lim_{x \to 3} \frac{x - 3}{1 - \sqrt{4 - x}}$$

(x) If 256 tosses of a coin resulted in 142 heads, would you conclude, at the 5% level of significance, that the coin was biased in favour of heads?

OR

(x) x, y, z are the midpoints of the sides of the $\triangle abc$ and t is such that oytz is a parallelogram.

By expressing \vec{a} in terms of \vec{x} , \vec{y} , \vec{z} , or otherwise, where \vec{o} is the origin, prove that

ta || xo

(a) (i) Let z_1 and z_2 be the two-co.nplex roots of the equation $z^3 + 8 = 0$.

Find these roots and write down a cubic equation in z for which z_1 , z_2 is one of the roots.

- (ii) Evaluate $\left(\frac{1-i\sqrt{3}}{4}\right)^{12}$.
- (b) On an Argand diagram plot the set K of z for which |z i| = 2.

Let w = 3z - 2.

If w = u + iv, express u and v in terms of x and y.

On an Argand diagram in the u, v plane plot the image of K under the transformation w = 3z - 2.

(3)

Let

 $u_1, u_2, u_3, \ldots u_n, \ldots$

be a sequence in which

 S_n = sum of the first n terms = product of the first n terms.

Express u_{n+1} in terms of S_n .

(un+1 = 1) Sn = Un+1

If $S_1 = 3$, show that

$$S_{_{1}}\ .\ S_{_{2}}\ .\ S_{_{3}}\ \ <\ \ 3^{^{7}}(S_{_{1}}\ -\ 1)\,(S_{_{2}}\ -\ 1)\,(S_{_{3}}\ -\ 1)\ .$$

(4)

(a) If

$$y = 2^X x^2$$

show that

$$\frac{dy}{dx} = \frac{y}{x}(2 + x \log 2).$$

(b) If

$$y = (\sin^{-1} x)^2$$

and

$$v = \sqrt{1 - x^2} \frac{dy}{dx} ,$$

evaluate

$$\frac{dv}{dx}$$
 when $x = \frac{1}{\sqrt{5}}$.

(c) Find the equation of the tangent to the curve

$$y^3 - xy - 6x^3 = 0$$

at the point (1, 2).

5.

The length of a radius of a circle is r. A rectangle is inscribed in the circle. Prove that the rectangle of maximum area is a square.

Investigate if the rectangle of maximum perimeter is also a square.

Evaluate each of the following:

(a)
$$\int_{0}^{1} (1 - x^{2})^{3} dx$$

$$\int_{2}^{4} \frac{x \, dx}{\sqrt{x - 1}}$$

$$(c) \qquad \int_0^{\frac{\pi}{2}} \frac{\sin^3 x \ dx}{1 + \cos x}$$

$$(d) \qquad \int \frac{dt}{e^t + e^{-t}} .$$

$$\frac{e^{t}}{e^{2t}+1} \frac{dt}{dt} = 2e^{2t}$$

7. (a) Test for convergence

$$\sum_{n=2}^{\infty} \frac{(n-1)!}{2^n}$$

(b) Find the range of values of
$$x > 0$$
 for which the series

$$\sum_{n=1}^{\infty} \frac{x^n}{n^2 + n}$$
converges.

$$\frac{1}{2} = \frac{\sqrt{2}}{\sqrt{2}}$$

(c) Test for convergence the series

$$\sum_{n=1}^{\infty} \frac{5^n}{4^n + 5^n}$$

8. (a) Prove that

$$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$

where P(X) is the probability of the event X.

A and B are mutually exclusive events such that

$$P(A) = \frac{1}{4}$$
 and $P(B) = \frac{1}{5}$.

Evaluate

(i)
$$P(A \cup B)$$

(ii)
$$P(A' \cup B')$$

where X' means the complement of event X.

(b) A factory exports large consignments of potatoes. On average 2% of the potatoes are bad. Random samples of 40 potatoes are taken from each consignment. A consignment is rejected if 5% of the potatoes in the sample are bad.

Find

- (i) the probability correct to two places of decimals that a consignment is rejected
- (ii) the expected percentage of rejected consignments.

8. x and y are points on the sides of the $\triangle opq$ such that $|\angle poq| = 60^{\circ}$ and |px| : |xq| = 1 : 3 = |qy| : |yo|.

Taking \overrightarrow{o} as the origin express \overrightarrow{x} and \overrightarrow{xy} in terms of \overrightarrow{p} and \overrightarrow{q} and prove that

if
$$|\vec{x}| = |\vec{x}\vec{y}|$$

then $|\vec{q}| = 3|\vec{p}|$

If z is the midpoint of [oq] and t is the midpoint of [oz], prove that $\angle oxz$ is a right angle and that the $\triangle xtz$ is equilateral.

