LEAVING CERTIFICATE EXAMINATION. 1987

MATHEMATICS - HIGHER LEVEL - PAPER I (300 marks)

THURSDAY, 11 JUNE - MORNING, 9.30 to 12.00

Attempt QUESTION 1 (100 marks) and FOUR other questions (50 marks each)

Marks may be lost if all your work is not clearly shown or if you have not indicated where a calculator has been used

1. (i) Solve
$$\log_{10} \frac{x^2 - 24}{x} = 1$$
 for $x \in \mathbb{R}$.

- (ii) Find the range of values of $x \in \mathbb{R}$ for which $\frac{x-3}{x+1} < 2$ when x+1 < 0.
- (iii) If $x = \frac{6t}{1+t^2}$ and $y = \frac{2(1-t^2)}{1+t^2}$, find the value of $\frac{x^2}{3^2} + \frac{y^2}{2^2}$.
- (iv) The code for a combination lock consists of two letters followed by three digits (e.g. ZB 020, EE 444). A part of the code contains the letter B and the digits 5 and 7. How many different permutations fit this description?
- (v) Find the equations of the lines represented by the equation $2x^2 + 5xy 3y^2 + 7x + 14y + 5 = 0$.
- (vi) A line containing p(5, 6) touches the circle $x^2 + y^2 4x 4y + 4 = 0$ at k. Calculate |pk|.
- (vii) Wine

$$n\begin{pmatrix} a & 0\\ 0 & b \end{pmatrix} - 1$$

in the form $\begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix}^{-1}$

- (viii) Find the matrix of the projection parallel to y = -x + 1 onto the line x + 2y = 0.
- (ix) Find the period of the function $x \rightarrow 2 \sin 3x \cos x$.
- (x) The square abcd is mapped onto itself under each of the axial symmetries of the plane;

$$f_P$$
, f_Q , f_R , f_S .

Investigate if $\{f_P, f_Q, f_R, f_S\}$ is a group under composition.

OR (x) Find the focus of the parabola

$$x = -8t - 2$$
, $y = 4t^2 + 1$, $t \in \mathbb{R}$.

Show that the quadratic equation

$$(1 + a - b)x^2 + 2x + (1 - a + b) = 0$$

has real roots, one of which is independent of a and b and the other is not.

If this other root is (-5), find the local minimum of the quadratic function

$$x \to (1 + a - b)x^2 + 2x + (1 - a + b), x \in \mathbb{R}$$

and find also where the graph of the function intersects the f(x) axis.

Draw a rough graph of the function.

3. (a) Show by induction that 17 divides

$$3^{4n+2} + 2 \cdot 4^{3n+1}$$
 for $n \in \mathbb{N}$.

(b)

in ascending powers of x.

The lines
$$\frac{1}{2} \int_{x} = \frac{1}{2} + \frac{4}{4}$$

 $3x + 4y + 4 = 0$ and $5x + 12y + 28 = 0$

cut the X axis at p and q, respectively. k is a point in [pq] which is equidistant from the two lines. Find this distance.

Find the equation of the line which contains the point of intersection of (b) the two lines

$$4x - 4y + 3 = 0$$
 and $4x + 4y - 3 = 0$

and which is parallel to the line

$$12x + 4y + 6 = 0.$$

1 5 n = 1+3 + 4 + 8.

Is there a line through the point of intersection of $\frac{1}{4}$ $\frac{5}{4}$ $\frac{3}{4}$ \frac

$$4x - 4y + 3 = 0$$
 and $4x + 4y - 3 = 0$ which is not represented by the equation

$$4x - 4y + 3 + \lambda(4x + 4y - 3) = 0$$

for any value of λ ? Give a reason for your answer.

 $4x - 4y + 3 + \lambda(4x + 4y - 3) = 0$ $\frac{1}{4}5u^{2} + \frac{2}{4}$

5. Write down the coordinates of the centre of the circle

$$S: y^2 = x(10 - x)$$

and find the length of its radius.

Prove that the line

$$K: 3x - 4y + 10 = 0$$

is a tangent to the circle and find the coordinates of the point of contact.

The line K cuts the Xaxis at p and makes an angle θ with the positive sense of the X axis. Let f be the anticlockwise rotation of measure 2θ about p.

Find the equation of f(S).

(b) Let
$$B = \begin{pmatrix} 3 & -1 \\ 1 & 3 \end{pmatrix}$$
 and $S = \begin{pmatrix} 4 & 3 \\ 3 & -4 \end{pmatrix}$.
Evaluate $B^{-1}SB$ and write it in the form $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$.
If every $\begin{pmatrix} x \\ y \end{pmatrix}$ satisfying $S\begin{pmatrix} x \\ y \end{pmatrix} = \lambda_1 \begin{pmatrix} x \\ y \end{pmatrix}$ is on a line L and every $\begin{pmatrix} x \\ y \end{pmatrix}$ satisfying $S\begin{pmatrix} x \\ y \end{pmatrix} = \lambda_2 \begin{pmatrix} x \\ y \end{pmatrix}$ is on a line M , prove $L \perp M$.

7. (a) (i) Show that
$$\frac{\sin \theta}{1 + \cos \theta} = \tan \frac{1}{2} \theta$$
.
(ii) If $\sin \theta = \frac{1 - x}{1 + x}$, express $\cos \theta$ in terms of x and hence show that $\tan \left(\frac{\pi}{4} - \frac{\theta}{2}\right) = \sqrt{x}$.

(b) Simplify the equation
$$\cos\left(x - \frac{\pi}{6}\right) - 3\sin\left(x + \frac{\pi}{3}\right) = 1$$
 and hence find one value of x which satisfies it.

8. (a)
$$P$$
 is the group $\{1, 5, 8, 12\}$, mod 13 under multiplication. Q is the group $\{1, 5, 7, 11\}$, mod 12 under multiplication. Investigate whether there is an isomorphism $f: P \rightarrow Q$. For each group write out $\{5^n \mid n \in \mathbb{N}\}$.

$$f_1: x \to x$$
 $f_2: x \to \frac{1}{x}$ $f_3: x \to 1-x$
 $f_4: x \to \frac{1}{1-x}$ $f_5: x \to \frac{x}{x-1}$ $f_6: x \to \frac{x-1}{x}$

form a group G under composition.

(ii) Verify that
$$\{f_1, f_4, f_6\}$$
 under composition is a subgroup of G .

8.
$$p(at^2, 2at), q\left(\frac{a}{t^2}, -\frac{2a}{t}\right)$$
 are two points on the parabola $y^2 = 4ax$.

Show that the chord [pq] is a focal chord. (i.e. [pq] contains the focus.)

Find the coordinates of the midpoint of [pq] in terms of a and t.

Deduce that the locus of the midpoints of the focal chords of $y^2 = 4ax$ is a parabola.

A focal chord of the parabola $y^2 = 8x$ has slope 1. Find its length.